GIGABYTE

G291-280
G291-281

Dual LGA3647 sockets motherboard for Intel® Xeon® Scalable Family processors

User Manual

Rev. 1.1
Copyright
© 2019 GIGA-BYTE TECHNOLOGY CO., LTD. All rights reserved.
The trademarks mentioned in this manual are legally registered to their respective owners.

Disclaimer
Information in this manual is protected by copyright laws and is the property of GIGABYTE. Changes to the specifications and features in this manual may be made by GIGABYTE without prior notice. No part of this manual may be reproduced, copied, translated, transmitted, or published in any form or by any means without GIGABYTE’s prior written permission.

Documentation Classifications
In order to assist in the use of this product, GIGABYTE provides the following types of documentation:

- User Manual: detailed information & steps about the installation, configuration and use of this product (e.g. motherboard, server barebones), covering hardware and BIOS.
- User Guide: detailed information about the installation & use of an add-on hardware or software component (e.g. BMC firmware, rail-kit) compatible with this product.
- Quick Installation Guide: a short guide with visual diagrams that you can reference easily for installation purposes of this product (e.g. motherboard, server barebones).

Please see the support section of the online product page to check the current availability of these documents.

For More Information
For related product specifications, the latest firmware and software, and other information please visit our website at http://www.gigabyte.com

For GIGABYTE distributors and resellers, additional sales & marketing materials are available from our reseller portal: http://reseller.b2b.gigabyte.com

For further technical assistance, please contact your GIGABYTE representative or visit https://esupport.gigabyte.com/ to create a new support ticket

For any general sales or marketing enquiries, you may also message GIGABYTE server directly by email: server.grp@gigabyte.com
Conventions
The following conventions are used in this user's guide:

<table>
<thead>
<tr>
<th>Icon</th>
<th>NOTE!</th>
<th>CAUTION!</th>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gives bits and pieces of additional information related to the current topic.</td>
<td>Gives precautionary measures to avoid possible hardware or software problems.</td>
<td>Alerts you to any damage that might result from doing or not doing specific actions.</td>
</tr>
</tbody>
</table>
Server Warnings and Cautions
Before installing a server, be sure that you understand the following warnings and cautions.

WARNING!
To reduce the risk of electric shock or damage to the equipment:
• Do not disable the power cord grounding plug. The grounding plug is an important safety feature.
• Plug the power cord into a grounded (earthed) electrical outlet that is easily accessible at all times.
• Unplug the power cord from the power supply to disconnect power to the equipment.
• Do not route the power cord where it can be walked on or pinched by items placed against it. Pay particular attention to the plug, electrical outlet, and the point where the cord extends from the server.

WARNING!
To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

WARNING!
This server is equipped with high speed fans. Keep away from hazardous moving fan blades during servicing.

CAUTION!
• Do not operate the server for long periods with the access panel open or removed. Operating the server in this manner results in improper airflow and improper cooling that can lead to thermal damage.
• Danger of explosion if battery is incorrectly replaced.
• Replace only with the same or equivalent type recommended by the manufacturer.
• Dispose of used batteries according to the manufacturer’s instructions.
Electrostatic Discharge (ESD)

CAUTION!

ESD CAN DAMAGE DRIVES, BOARDS, AND OTHER PARTS. WE RECOMMEND THAT YOU PERFORM ALL PROCEDURES AT AN ESD WORKSTATION. IF ONE IS NOT AVAILABLE, PROVIDE SOME ESD PROTECTION BY WEARING AN ANTI-STATIC WRIST STRAP ATTACHED TO CHASSIS GROUND -- ANY UNPAINTED METAL SURFACE -- ON YOUR SERVER WHEN HANDLING PARTS.

Always handle boards carefully. They can be extremely sensitive to ESD. Hold boards only by their edges without any component and pin touching. After removing a board from its protective wrapper or from the system, place the board component side up on a grounded, static free surface. Use a conductive foam pad if available but not the board wrapper. Do not slide board over any surface.

System power on/off: To remove power from system, you must remove the system from rack. Make sure the system is removed from the rack before opening the chassis, adding, or removing any non hot-plug components.

Hazardous conditions, devices and cables: Hazardous electrical conditions may be present on power, telephone, and communication cables. Turn off the system and disconnect the cables attached to the system before servicing it. Otherwise, personal injury or equipment damage can result.

Electrostatic discharge (ESD) and ESD protection: ESD can damage drives, boards, and other parts. We recommend that you perform all procedures in this chapter only at an ESD workstation. If one is not available, provide some ESD protection by wearing an antistatic wrist strap attached to chassis ground (any unpainted metal surface on the server) when handling parts.

ESD and handling boards: Always handle boards carefully. They can be extremely sensitive to electrostatic discharge (ESD). Hold boards only by their edges. After removing a board from its protective wrapper or from the system, place the board component side up on a grounded, static free surface. Use a conductive foam pad if available but not the board wrapper. Do not slide board over any surface.

Installing or removing jumpers: A jumper is a small plastic encased conductor that slips over two jumper pins. Some jumpers have a small tab on top that can be gripped with fingertips or with a pair of fine needle nosed pliers. If the jumpers do not have such a tab, take care when using needle nosed pliers to remove or install a jumper; grip the narrow sides of the jumper with the pliers, never the wide sides. Gripping the wide sides can damage the contacts inside the jumper, causing intermittent problems with the function controlled by that jumper. Take care to grip with, but not squeeze, the pliers or other tool used to remove a jumper, or the pins on the board may bend or break.
CAUTION!

Risk of explosion if battery is replaced incorrectly or with an incorrect type. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.
Table of Contents

Chapter 1 Hardware Installation ...11
 1-1 Installation Precautions ..11
 1-2 Product Specifications ..12
 1-3 System Block Diagram ...16
Chapter 2 System Appearance ...17
 2-1 Front View ..17
 2-2 Rear View ...17
 2-3 Front Panel LED and Buttons .. 18
 2-4 Rear System Button and LEDs ..19
 2-5 Hard Disk Drive LEDs ..20
 2-6 Hard Disk Back Plane Board Jumper Settings ...21
Chapter 3 System Hardware Installation ..23
 3-1 Removing Chassis Cover ...24
 3-2 Removing and Installing the Fan Duct ...25
 3-3 Installing the CPU and Heat Sink ...26
 3-4 Installing the Memory ...28
 3-4-1 Six Channel Memory Configuration ...28
 3-4-2 Installing a Memory ...29
 3-4-3 DIMM Population Table ..30
 3-4-4 Intel Optane DCPMM DIMM Population Rule ..30
 3-5 Installing the GPU Card ... 31
 3-6 Installing a PCI Express Card ..39
 3-7 Installing an OCP Card .. 43
 3-8 Installing the Hard Disk Drive ..45
 3-9 Replacing the FAN Assembly ...47
 3-10 Replacing the Power Supply ...51
 3-11 Cable Routing ..52
Chapter 4 Motherboard Components ...53
 4-1 Motherboard Components ...53
 4-2 Jumper Setting ...55
Chapter 5 BIOS Setup ..57
 5-1 The Main Menu ..59
 5-2 Advanced Menu ..62
 5-2-1 iSCSI Configuration ..63
1-1 Installation Precautions

The motherboard/system contain numerous delicate electronic circuits and components which can become damaged as a result of electrostatic discharge (ESD). Prior to installation, carefully read the service guide and follow these procedures:

- Prior to installation, do not remove or break motherboard S/N (Serial Number) sticker or warranty sticker provided by your dealer. These stickers are required for warranty validation.
- Always remove the AC power by unplugging the power cord from the power outlet before installing or removing the motherboard or other hardware components.
- When connecting hardware components to the internal connectors on the motherboard, make sure they are connected tightly and securely.
- When handling the motherboard, avoid touching any metal leads or connectors.
- It is best to wear an electrostatic discharge (ESD) wrist strap when handling electronic components such as a motherboard, CPU or memory. If you do not have an ESD wrist strap, keep your hands dry and first touch a metal object to eliminate static electricity.
- Prior to installing the motherboard, please have it on top of an antistatic pad or within an electrostatic shielding container.
- Before unplugging the power supply cable from the motherboard, make sure the power supply has been turned off.
- Before turning on the power, make sure the power supply voltage has been set according to the local voltage standard.
- Before using the product, please verify that all cables and power connectors of your hardware components are connected.
- To prevent damage to the motherboard, do not allow screws to come in contact with the motherboard circuit or its components.
- Make sure there are no leftover screws or metal components placed on the motherboard or within the computer casing.
- Do not place the computer system on an uneven surface.
- Do not place the computer system in a high-temperature environment.
- Turning on the computer power during the installation process can lead to damage to system components as well as physical harm to the user.
- If you are uncertain about any installation steps or have a problem related to the use of the product, please consult a certified computer technician.
1-2 Product Specifications

CPU
- 2nd Generation Intel® Xeon® Scalable and Intel® Xeon® Scalable Processors
- Intel® Xeon® Platinum Processor, Intel® Xeon® Gold Processor, Intel® Xeon® Silver Processor and Intel® Xeon® Bronze Processor

NOTE: If only 1 CPU is installed, some PCIe or memory functions might be unavailable.

Socket
- 2 x LGA 3647
- Socket P0
- Mounting pitch: Narrow ILM

Chipset
- Intel® C621 Express Chipset

Memory
- 24 x DIMM slots
- DDR4 memory supported only
- 6-channel memory architecture
- RDIMM modules up to 32GB supported
- LRDIMM modules up to 64GB supported
- Support Intel® Optane™ DC Persistent Memory
- 1.2V modules: 2933 (1DPC)/2666/2400/2133 MHz

NOTE:
1. 2933MHz for 2nd Generation Intel® Xeon® Scalable Processors only
2. Intel® Optane™ DC Persistent Memory for 2nd Generation Intel® Xeon® Scalable Processors only

LAN
- 2 x 10Gb/s BASE-T LAN ports (Intel® X550-AT2)
- 1 x 10/100/1000 management LAN

Expansion Slot
- 8 x PCIe x16 slots (Gen3 x16)
- 1 x PCIe Gen3 x16 mezzanine slot (MEZZ_1)
- 1 x PCIe Gen3 x16 mezzanine slot (MEZZ_2/MEZZ_3)
- 1 x OCP Gen3 x16 mezzanine slot (MEZZ_2/MEZZ_3)

- System is validated for population with a uniform GPU model
- Support is not provided for mixed GPU populations

Video
- Integrated in Aspeed® AST2500
- 2D Video Graphic Adapter with PCIe bus interface
- 1920x1200@60Hz 32bpp, DDR4 SDRAM

Storage
- 8 x 2.5" SATA/SAS hot-swappable HDD/SSD bays

SAS
- Supported via add-on SAS Card
Internal Connectors
- 1 x 18-pin power connector (system power rail)
- 1 x 18-pin power connector (CPU0 all power rail)
- 1 x 18-pin power connector (CPU1 all power rail)
- 4 x SlimSAS connectors
- 1 x TPM header
- 1 x HDD backplane board header
- 1 x 23-pin front panel header
- 1 x JTAG connector
- 1 x Serial header
- 1 x IPMB connector
- 2 x SSATA connectors
- 1 x RAID key connector
- 1 x P12V standby connector
- 1 x Clear CMOS jumper
- 1 x LT debug jumper

Front Panel LED/Buttons
- 1 x Power button with LED
- 1 x ID button with LED
- 2 x LAN activity LEDs
- 1 x HDD activity LED
- 1 x Reset button
- 1 x System status LED

Rear Panel I/O
- 2 x USB 3.0
- 1 x VGA
- 2 x RJ45
- 1 x MLAN
- 1 x Power button with LED
- 1 x ID button with LED
- 1 x Reset button
- 1 x NMI button
- 1 x System status LED

Backplane I/O
- 8 x SAS/SATA ports
- Bandwidth: SATAIII 6Gb/s or SAS 12Gb/s per port
- SAS card is required for SAS devices support

TPM
- 1 x TPM header
System Management
- Aspeed® AST2500 management controller
- Avocent® MergePoint IPMI 2.0 web interface:
 - Network settings
 - Network security settings
 - Hardware information
 - Users control
 - Services settings
 - IPMI settings
 - Sessions control
 - LDAP settings
 - Power control
 - Fan profiles
 - Voltages, fans and temperatures monitoring
 - System event log
 - Events management (platform events, trap settings, email settings)
 - Serial Over LAN
 - vKVM & vMedia (HTML5)

Power Supply (G291-280)
- 2 x 2200W redundant PSUs
- 80 PLUS Platinum

AC Input:
- 100-127V~/ 14A, 47-63Hz
- 200-240V~/ 12.6A, 47-63Hz

DC Output:
- Max 1200W/ 100-127V~
- +12.12V/ 95.6A
- +12Vsb/ 3.5A
- Max 2200W/ 200-240V
- +12.12V/ 178.1A
- +12Vsb/ 3.5A
Power Supply (G291-281)

- 2 x 2000W redundant PSU
- 80 PLUS Titanium

AC input:
- 1000W: 100-127V/ 12-9.5A, 50-60Hz
- 1800W: 200-220V/ 10-9.5A, 50-60Hz

DC output:
- Max 1000W@100-127V:
 - +12V/ 83.3A
 - +12Vsb/ 2.1A
 - 1800W@200-220V
 - +12V/ 150.0A
 - +12Vsb/ 2.1A
 - 1980W@220-230V
 - +12V/ 165.0A
 - +12Vsb/ 2.1A
 - 2000W@200-240V
 - +12V/ 166.7A
 - +12Vsb/ 2.1A

NOTE: The system power supply requires C19 type power cord

Environment

- Operating temperature: 10°C to 35°C
- Non-operating temperature: -40°C to 60°C
- Operating humidity: 8-80% (non-condensing)
- Non-operating humidity: 20%-95% (non-condensing)

System Dimension
- 2U
- 438mm (W) x 87.5mm (H) x 800mm (D)

* We reserves the right to make any changes to the product specifications and product-related information without prior notice.
1-3 System Block Diagram
Chapter 2 System Appearance

2-1 Front View

![Front View Diagram]

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front panel LED and buttons</td>
<td>7</td>
<td>2.5-inch hard disk drive #4</td>
</tr>
<tr>
<td>2</td>
<td>System fan (GPU78_FAN)</td>
<td>8</td>
<td>2.5-inch hard disk drive #5</td>
</tr>
<tr>
<td>3</td>
<td>2.5-inch hard disk drive #0</td>
<td>9</td>
<td>2.5-inch hard disk drive #6</td>
</tr>
<tr>
<td>4</td>
<td>2.5-inch hard disk drive #1</td>
<td>10</td>
<td>2.5-inch hard disk drive #7</td>
</tr>
<tr>
<td>5</td>
<td>2.5-inch hard disk drive #2</td>
<td>11</td>
<td>System fan (GPU34_FAN)</td>
</tr>
<tr>
<td>6</td>
<td>2.5-inch hard disk drive #3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Please Go to Chapter 2-3 Front Panel LED and Buttons for detail description of function LEDs.

2-2 Rear View

![Rear View Diagram]

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System fan (GPU12E_FAN)</td>
<td>9</td>
<td>USB 3.0 ports</td>
</tr>
<tr>
<td>2</td>
<td>VGA port</td>
<td>10</td>
<td>System fan (GPU56E_FAN)</td>
</tr>
<tr>
<td>3</td>
<td>10/100/1000 Server Management LAN port</td>
<td>11</td>
<td>Power Supply (PSU1) Fan</td>
</tr>
<tr>
<td>4</td>
<td>Power button/LED</td>
<td>12</td>
<td>Power supply module cord socket</td>
</tr>
<tr>
<td>5</td>
<td>ID button</td>
<td>13</td>
<td>NMI button</td>
</tr>
<tr>
<td>6</td>
<td>Reset button</td>
<td>14</td>
<td>Power Supply (PSU2) Fan</td>
</tr>
<tr>
<td>7</td>
<td>System status LED</td>
<td>15</td>
<td>Power supply module cord socket</td>
</tr>
<tr>
<td>8</td>
<td>RJ-45 LAN ports</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-3 Front Panel LED and Buttons

![Front Panel Diagram]

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Color</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power button with LED</td>
<td>Green</td>
<td>On</td>
<td>System is powered on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Blink</td>
<td>System is in ACPI S1 state (sleep mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>System is not powered on or in ACPI S5 state (power off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>System is in ACPI S4 state (hibernate mode)</td>
</tr>
<tr>
<td>2.</td>
<td>ID Button</td>
<td>Green</td>
<td>Solid On</td>
<td>Link between system and network or no access.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Blink</td>
<td>Data transmission or receiving is occurring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>No data transmission or receiving is occurring</td>
</tr>
<tr>
<td>3/4.</td>
<td>LAN 1/2 Active/Link LEDs</td>
<td>Green</td>
<td>On</td>
<td>HDD locate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Blink</td>
<td>HDD access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>On</td>
<td>HDD fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green/Amber</td>
<td>Blink</td>
<td>HDD rebuilding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>No HDD access or no HDD fault.</td>
</tr>
<tr>
<td>5.</td>
<td>HDD Status LED</td>
<td>Green</td>
<td>On</td>
<td>System is operating normally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>Critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>System fan failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>System temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Non-critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Redundant power module failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Temperature and voltage issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Chassis intrusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>System is not ready, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POST error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NMI error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Processor or terminator missing</td>
</tr>
<tr>
<td>6.</td>
<td>System Status LED</td>
<td>Green</td>
<td>Solid On</td>
<td>System is operating normally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>Critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>System fan failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>System temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Non-critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Redundant power module failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Temperature and voltage issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Chassis intrusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>System is not ready, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POST error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NMI error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Processor or terminator missing</td>
</tr>
</tbody>
</table>

7. Reset Button

Press the button to reset the system.
Rear System Button and LEDs

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Color</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power button with LED</td>
<td>Green</td>
<td>On</td>
<td>System is powered on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Blink</td>
<td>System is in ACPI S1 state (sleep mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>• System is not powered on or in ACPI S5 state (power off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• System is in ACPI S4 state (hibernate mode)</td>
</tr>
<tr>
<td>2.</td>
<td>ID Button</td>
<td></td>
<td></td>
<td>Press the button to activate system identification</td>
</tr>
<tr>
<td>3.</td>
<td>Reset Button</td>
<td></td>
<td></td>
<td>Press the button to reset the system.</td>
</tr>
<tr>
<td>4.</td>
<td>NMI button</td>
<td></td>
<td></td>
<td>Press the button server generates a NMI to the processor if the multiple-bit ECC errors occur, which effectively halt the server.</td>
</tr>
<tr>
<td>5.</td>
<td>System Status LED</td>
<td>Green</td>
<td>Solid On</td>
<td>System is operating normally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Solid On</td>
<td>Critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• System fan failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• System temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Blink</td>
<td>Non-critical condition, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Redundant power module failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Temperature and voltage issue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Chassis intrusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>Off</td>
<td>System is not ready, may indicate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• POST error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NMI error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Processor or terminator missing</td>
</tr>
</tbody>
</table>
2-5 Hard Disk Drive LEDs

<table>
<thead>
<tr>
<th>RAID SKU</th>
<th>LED1</th>
<th>Locate</th>
<th>HDD Fault</th>
<th>Rebuilding</th>
<th>HDD Access</th>
<th>HDD Present (No Access)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RAID configuration</td>
<td>Disk LED (LED on Back Panel)</td>
<td>Green</td>
<td>ON(*1)</td>
<td>OFF</td>
<td>Green</td>
<td>OFF</td>
</tr>
<tr>
<td>(via HBA, ICH)</td>
<td></td>
<td>Amber</td>
<td>OFF</td>
<td>OFF</td>
<td>Amber</td>
<td>OFF</td>
</tr>
<tr>
<td>Removed HDD Slot (LED on Back Panel)</td>
<td></td>
<td>Green</td>
<td>ON(*1)</td>
<td>OFF</td>
<td>Green</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>OFF</td>
<td>OFF</td>
<td>Amber</td>
<td>--</td>
</tr>
<tr>
<td>RAID configuration</td>
<td>Disk LED</td>
<td>Green</td>
<td>ON</td>
<td>OFF</td>
<td>Alternately</td>
<td>OFF</td>
</tr>
<tr>
<td>(via HW RAID Card or SW RAID Card)</td>
<td></td>
<td>Amber</td>
<td>OFF</td>
<td>ON</td>
<td>(Low Speed: 2 Hz)</td>
<td>OFF</td>
</tr>
<tr>
<td>Removed HDD Slot</td>
<td></td>
<td>Green</td>
<td>ON(*1)</td>
<td>OFF</td>
<td>(*3)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>OFF</td>
<td>ON</td>
<td>(*3)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED 2</th>
<th>HDD Present</th>
<th>No HDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
2-6 Hard Disk Back Plane Board Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Setting</th>
<th>Hard Disk Drive Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>RAID card supported</td>
</tr>
</tbody>
</table>
Pre-installation Instructions

Computer components and electronic circuit boards can be damaged by discharges of static electricity. Working on computers that are still connected to a power supply can be extremely dangerous. Follow the simple guidelines below to avoid damage to your computer or injury to yourself.

• Always disconnect the computer from the power outlet whenever you are working inside the computer case.

• If possible, wear a grounded wrist strap when you are working inside the computer case. Alternatively, discharge any static electricity by touching the bare metal system of the computer case, or the bare metal body of any other grounded appliance.

• Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Do not flex or stress the circuit board.

• Leave all components inside the static-proof packaging until you are ready to use the component for the installation.
3-1 Removing Chassis Cover

Before you remove or install the system cover
• Make sure the system is not turned on or connected to AC power.

Follow these instructions to remove the system cover:

1. Remove the eight screws securing the cover.
2. Slide the cover towards the rear and remove the cover in the direction of the arrow.
3-2 Removing and Installing the Fan Duct
Follow these instructions to remove/install the fan duct:

1. Lift up to remove the fan duct
2. To install the fan duct, align the tabs at the front of the fan duct with the slots in the system fan compartment as shown in the image below, and then push down the fan duct into chassis until its firmly seats
3-3 Installing the CPU and Heat Sink

Read the following guidelines before you begin to install the CPU:
• Make sure that the motherboard supports the CPU.
• Always turn off the computer and unplug the power cord from the power outlet before installing
 the CPU to prevent hardware damage.
• Unplug all cables from the power outlets.
• Disconnect all telecommunication cables from their ports.
• Place the system unit on a flat and stable surface.
• Open the system according to the instructions.

WARNING!
Failure to properly turn off the server before you start installing components may cause serious
damage. Do not attempt the procedures described in the following sections unless you are a
qualified service technician.

Follow these instructions to install the CPU:

1. Align and install the processor on the carrier.
 NOTE: Apply thermal compound evenly on the top of the CPU. Remove the protective cover from
 the underside of the heat sink.
2. Carefully flip the heatsink over. Then install the carrier assembly on the bottom of the heatsink and
 make sure the gold arrow is located in the correct direction.
3. Remove the CPU cover.
 NOTE: Save and replace the CPU cover if the processor is removed from its socket.
4. Align the heatsink with the CPU socket by the guide pins and make sure the gold arrow is located in
 the correct direction. Then place the heatsink onto the top of the CPU socket.
5. To secure the heatsink, tighten the screws in a sequential order (1→2→3→4).
 NOTE: When disassembling the heatsink, loosen the screws in reverse order (4→3→2→1).
3-4 Installing the Memory
Read the following guidelines before you begin to install the memory:

- Make sure that the motherboard supports the memory. It is recommended that memory of the same capacity, brand, speed, and chips be used.
- Always turn off the computer and unplug the power cord from the power outlet before installing the memory to prevent hardware damage.
- Memory modules have a foolproof design. A memory module can be installed in only one direction. If you are unable to insert the memory, switch the direction.

3-4-1 Six Channel Memory Configuration
This motherboard provides 24 DDR4 memory sockets and supports Six Channel Technology. After the memory is installed, the BIOS will automatically detect the specifications and capacity of the memory. Enabling Four Channel memory mode will be four times of the original memory bandwidth.
3-4-2 Installing a Memory

Before installing a memory module, make sure to turn off the computer and unplug the power cord from the power outlet to prevent damage to the memory module.

Be sure to install DDR4 DIMMs on this motherboard.

Follow these instructions to install the Memory:

1. Insert the DIMM memory module vertically into the DIMM slot, and push it down.
2. Close the plastic clip at both edges of the DIMM slots to lock the DIMM module.
3. Reverse the installation steps when you want to remove the DIMM module.

3-4-3 DIMM Population Table

<table>
<thead>
<tr>
<th>Type</th>
<th>Ranks Per DIMM and Data Width</th>
<th>DIMM Capacity (GB)</th>
<th>Speed (MT/s); Voltage (V)</th>
<th>Slot Per Channel (SPC)</th>
<th>1 Slot per Channel</th>
<th>2 Slot per Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DIMM Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx4</td>
<td>8Gb 16Gb</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
<td>SRx8</td>
<td>4Gb 8Gb</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx8</td>
<td>8Gb 16Gb</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
<td>DRx4</td>
<td>16Gb 32Gb</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDIMM</td>
<td>QRx4 8Rx4</td>
<td>N/A 2H-64GB</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRDIMM 3DS</td>
<td>QRx4</td>
<td>32GB 2H 64GB</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRDIMM 3DS</td>
<td>QRx4 8Rx4</td>
<td>N/A 4H 128GB</td>
<td>2666 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3-4-4 Intel Optane DCPMM DIMM Population Rule

Thermal conditions for DCPMM DIMM support:

- The ambient temperature must be at or below 35°C
- The Cascade Lake CPU used must have a maximum TDP of 205W
- A maximum of 6 pcs 128G DCPMM may be installed

- RDIMM / DCPMM must be installed into CPU0 memory first
- You must install one RDIMM into any slot #0 of CPU0 before installing the DCPMM. (e.g. A0/B0/C0)
- The DCPMM must be installed into the DIMM slot #1 next to the corresponding RDIMM in slot #0 (e.g. if RDIMM is installed into DIMM slot A0, the DCPMM must be installed into DIMM slot A1)
3-5 Installing the GPU Card

- Voltages can be present within the server whenever an AC power source is connected. This voltage is present even when the main power switch is in the off position. Ensure that the system is powered-down and all power sources have been disconnected from the server prior to installing a PCI card.

Failure to observe these warnings could result in personal injury or damage to equipment.

- The PCI riser assembly does not include a riser card or any cabling as standard. To install a PCI card, a riser card must be installed.

For GPU0/GPU1/GPU6/GPU7

Follow these instructions to install the GPU card:

1. [For GPU6/GPU7] Loosen and remove the two screws securing the PCI cage at the top of the system. [For GPU0/GPU1] Loosen and remove the single screw at the top of the system and the two screws at the rear of the system securing the PCI cage.
2. Pull the two plastic handles to lift up the PCI cage from the system.
3. Insert the card into the selected slot. Make sure that the card is properly seated.
4. Secure the GPU cards in place with two screws.
- If the GPU card supports 225W, connect the 2 x 4 power cable.
- If the GPU card supports 300W, connect the 2x4 and 2x3 power cables.
For GPU2/GPU3/GPU4/GPU5

Follow these instructions to install the GPU card:

1. [For GPU4/GPU5] Loosen and remove the two screws securing the PCI cage at the top of the system.
 [For GPU2/GPU3] Loosen and remove the single screw at the top of the system and the two screws at the rear of the system securing the PCI cage.
 Pull the two plastic handles to lift up the PCI cage from the system.
2. Insert the card into the selected slot. Make sure that the card is properly seated.
3. Secure the GPU cards in place with two screws.
Please insert the PCI cage into the selected slot with the correct orientation. See illustration below for instruction.

- If the GPU card supports 225W, connect the 2 x 4 power cable.
- If the GPU card supports 300W, connect the 2x4 and 2x3 power cables.
3-6 Installing a PCI Express Card

- Voltages can be present within the server whenever an AC power source is connected. This voltage is present even when the main power switch is in the off position. Ensure that the system is powered-down and all power sources have been disconnected from the server prior to installing a PCI card.

Failure to observe these warnings could result in personal injury or damage to equipment.

Follow these instructions to install a PCI Express x8 card on right side of the system:

1. Loosen and remove the two screws securing the PCI Express card bracket on the right side of the system.
2. Remove the PCI Express card bracket from the system.
3. Install the PCI Express card into the bracket.
4. Secure the PCI Express card to the bracket with one screw.
5. Install the PCI Express card bracket with card back into the system, ensure that the connector on the bracket is securely installed into the connector on the motherboard as shown.
6. Secure the PCI Express card bracket with card to the system with two (2) screws.
Follow these instructions to install a PCI Express x16 card on left side of the system:

1. Loosen the thumbnail screw securing the PCI Express card bracket on the left side of the system.
2. Remove the PCI Express card bracket from the system.
3. Install the PCI Express card into the bracket.
4. Secure the PCI Express card to the bracket with one screw.
5. Install the PCI Express card bracket with card back into the system, ensure that the connector on the bracket is securely installed into the connector on the motherboard as shown.
6. Secure the PCI Express card bracket with card to the system using the thumbnail screw.
IMPORTANT

If you are installing an add-on card and want to support NVMe hard drives, the OCP switch located near the proprietary PCIe x8 mezzanine connector at the rear of the system (#37 in the 4-1 Motherboard Components section) must be set to off (labeled 1), as seen in the image below. Once the OCP switch is set to off, the proprietary PCIe x8 mezzanine connector’s functionality will be disabled, and the Slimline 4i connectors for NVMe storage (#15 & #16 in the 4-1 Motherboard Components section) will be enabled.
3-7 Installing an OCP Card

- Voltages can be present within the server whenever an AC power source is connected. This voltage is present even when the main power switch is in the off position. Ensure that the system is powered-down and all power sources have been disconnected from the server prior to installing a PCI card.

Failure to observe these warnings could result in personal injury or damage to equipment.

Follow these instructions to install an OCP card

1. Loosen the thumbnail screw securing the PCI Express card bracket on the left side of the system.
2. Remove the PCI Express card bracket from the system.
3. Loosen and remove the two screws securing the hook to the system.
4. Remove the hook from the system.
5. Install the interposer board onto the riser card.
6. Install the OCP card on the riser card.
7. Secure the OCP card on the riser card with three screws.
8. Install the OCP card assembly in the system.
9. Secure the OCP card assembly in the system with one screw.
3-8 Installing the Hard Disk Drive

Read the following guidelines before you begin to install the Hard disk drive:

- Take note of the drive tray orientation before sliding it out.
- The tray will not fit back into the bay if inserted incorrectly.
- Make sure that the HDD is connected to the HDD connector on the backplane.

Follow these instructions to install a 2.5” hard disk drive:

1. Press the release button.
2. Extend the locking lever.
3. Pull the locking lever to remove the HDD tray.
4. Slide the hard disk drive into the blank HDD tray.
5. Secure the hard drive to the tray with four (4) screws as shown. Do not over tighten the screws. Slide the hard drive tray into the bay until it locks in place.

CAUTION!

We strongly recommend using enterprise level hard disk drives in the Gigabyte server system. For more information of recommended HDDs, please visit the Gigabyte website:

https://www.gigabyte.com and search for the specific product QVL from Support & Downloads.
IMPORTANT

- If a RAID card is installed in your system, RAID functionality must first be enabled via the jumper located on the hard disk back plane board. See Section 3-6 "Hard Disk Back Plane Board Jumper Setting" for details on the jumper settings.
- In order to access the RAID jumper the hard drive cage must be lifted out of the assembly by first removing the three screws indicated below then lifting the hard drive cage from the system, as indicated in the image below:
3-9 Replacing the FAN Assembly

CAUTION!

Before you remove or install the system fans follow these steps:
- Make sure the system is not turned on or connected to the AC power.
- Disconnect all necessary cable connections. Failure to observe these warnings could result in personal injury or damage to the equipment.

Follow these instructions to replace the fan assembly:
[For GPU12_FAN/GPU24_FAN/GPU56_FAN/GPU78_FAN]
1. Disconnect the fan cable and then lift up the fan assembly from the chassis.
2. Reverse the previous steps to install the replacement fan assembly.
[For SYS_FAN1/SYS_FAN2]

1. Disconnect the fan cable and then lift up the fan assembly from the chassis.
2. Reverse the previous steps to install the replacement fan assembly.
[For GPU12E_FAN/GPU56E_FAN]
1. Disconnect the fan cable and then loosen and remove the screws securing the fan cage.
2. Remove the fan cage from the system
3. Reverse the previous steps to install the replacement fan assembly.
CAUTION!

- To avoid fan cable damage, please make sure the fan cables are firmly seated in the cable routing hooks.
3-10 Replacing the Power Supply

CAUTION!

- In order to reduce the risk of injury from electric shock, disconnect AC power from the power supply before removing it from the system.

Follow these instructions to replace the power supply:

1. Pull up the power supply handle and press the retaining clip on the right side of the power supply along the direction of the arrow.
2. At the same time, pull out the power supply using the handle.
3. Insert the replacement power supply firmly into the chassis. Connect the AC power cord to the replacement power supply.

CAUTION!

- Please see the illustration below for installation sequence.
3-11 Cable Routing

<table>
<thead>
<tr>
<th>No.</th>
<th>Suggest Cable</th>
<th>No.</th>
<th>Suggest Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HDD BPB Signal Cable #1 (Aqua Green)</td>
<td>2.</td>
<td>1x3 Power Cable (Teal)</td>
</tr>
<tr>
<td>3.</td>
<td>Fan Power Cables (Red)</td>
<td>4.</td>
<td>Slimline SAS Cable 2 (Grass Green)</td>
</tr>
<tr>
<td>5.</td>
<td>Slimline SAS Cable 1 (Magenta)</td>
<td>6.</td>
<td>Main Power Cable (Yellow)</td>
</tr>
<tr>
<td>7.</td>
<td>CPU Power Cable (Blue)</td>
<td>8.</td>
<td>SMD Cable (Pink)</td>
</tr>
<tr>
<td>9.</td>
<td>Front IO Cable (Green)</td>
<td>10.</td>
<td>HDD BPB Power Cable (Orange)</td>
</tr>
</tbody>
</table>

System Hardware Installation - 51 -
Chapter 4 Motherboard Components

4-1 Motherboard Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rear VGA port</td>
</tr>
<tr>
<td>2</td>
<td>Serial port connector</td>
</tr>
<tr>
<td>3</td>
<td>12V Standby power connector (for system power)</td>
</tr>
<tr>
<td>4</td>
<td>10/100/1000 Server management LAN port</td>
</tr>
<tr>
<td>5</td>
<td>Power button with LED</td>
</tr>
<tr>
<td>6</td>
<td>sSATA 6Gb/s connector #1</td>
</tr>
<tr>
<td>7</td>
<td>ID button with LED</td>
</tr>
<tr>
<td>8</td>
<td>Reset button (top)/ NMI button (bottom)</td>
</tr>
<tr>
<td>9</td>
<td>System status LED</td>
</tr>
<tr>
<td>10</td>
<td>VMD RAID upgrade key</td>
</tr>
<tr>
<td>11</td>
<td>IPMB connector</td>
</tr>
<tr>
<td>12</td>
<td>GbE LAN ports</td>
</tr>
<tr>
<td>13</td>
<td>USB 3.0 ports</td>
</tr>
<tr>
<td>14</td>
<td>HDD back plane board connector</td>
</tr>
<tr>
<td>15</td>
<td>SlimLine 4i connector #0 (support NVMe)</td>
</tr>
<tr>
<td>16</td>
<td>SlimLine 4i connector #1 (support NVMe)</td>
</tr>
<tr>
<td>17</td>
<td>SlimLine 4i connector #1 (SATA 6Gb/s signal/for SATA #0 - #3))</td>
</tr>
<tr>
<td>18</td>
<td>SlimLine 4i connector #2 (SATA 6Gb/s signal/for SATA #4 - #7))</td>
</tr>
<tr>
<td>19</td>
<td>2 x 9-pin main power connector (for primary CPU)</td>
</tr>
<tr>
<td>20</td>
<td>sSATA 6Gb/s connector #0 (supports SATA DOM)</td>
</tr>
<tr>
<td>21</td>
<td>SATA DOM support power connector for sSATA port #0</td>
</tr>
<tr>
<td>22</td>
<td>PCIe x16 slot #2</td>
</tr>
<tr>
<td>23</td>
<td>PCIe x16 slot #4</td>
</tr>
<tr>
<td>24</td>
<td>Front panel header (primary)</td>
</tr>
<tr>
<td>25</td>
<td>2 x 9-pin main power connector (for secondary CPU)</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>Front panel header (secondary/for power distribution board)</td>
</tr>
<tr>
<td>27</td>
<td>PCIe x16 slot #3</td>
</tr>
<tr>
<td>28</td>
<td>PCIe x16 slot #1</td>
</tr>
<tr>
<td>29</td>
<td>Battery cable connector</td>
</tr>
<tr>
<td>30</td>
<td>2 x 9-pin main power connector (system main power)</td>
</tr>
<tr>
<td>31</td>
<td>HDD NVMe enable switch</td>
</tr>
<tr>
<td>32</td>
<td>Case open intrusion header</td>
</tr>
<tr>
<td>33</td>
<td>Proprietary PCIe x16 slot</td>
</tr>
<tr>
<td>34</td>
<td>TPM connector</td>
</tr>
<tr>
<td>35</td>
<td>BCM firmware readiness LED</td>
</tr>
<tr>
<td>36</td>
<td>Proprietary PCIe x8 slot</td>
</tr>
<tr>
<td>37</td>
<td>Proprietary PCIe x8 slot</td>
</tr>
</tbody>
</table>
4-2 Jumper Setting
BIOS (Basic Input and Output System) records hardware parameters of the system in the EFI on the motherboard. Its major functions include conducting the Power-On Self-Test (POST) during system startup, saving system parameters and loading operating system, etc. BIOS includes a BIOS Setup program that allows the user to modify basic system configuration settings or to activate certain system features. When the power is turned off, the battery on the motherboard supplies the necessary power to the CMOS to keep the configuration values in the CMOS.

To access the BIOS Setup program, press the key during the POST when the power is turned on.

- BIOS flashing is potentially risky, if you do not encounter problems of using the current BIOS version, it is recommended that you don't flash the BIOS. To flash the BIOS, do it with caution. Inadequate BIOS flashing may result in system malfunction.
- It is recommended that you not alter the default settings (unless you need to) to prevent system instability or other unexpected results. Inadequately altering the settings may result in system's failure to boot. If this occurs, try to clear the CMOS values and reset the board to default values. (Refer to the Exit section in this chapter or introductions of the battery/clearing CMOS jumper in Chapter 1 for how to clear the CMOS values.)

BIOS Setup Program Function Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><-></code></td>
<td>Move the selection bar to select the screen</td>
</tr>
<tr>
<td><code><flip></code></td>
<td>Move the selection bar to select an item</td>
</tr>
<tr>
<td><code><></code></td>
<td>Increase the numeric value or make changes</td>
</tr>
<tr>
<td><code><flip></code></td>
<td>Decrease the numeric value or make changes</td>
</tr>
<tr>
<td><code><Enter></code></td>
<td>Execute command or enter the submenu</td>
</tr>
<tr>
<td><code><Esc></code></td>
<td>Main Menu: Exit the BIOS Setup program</td>
</tr>
<tr>
<td></td>
<td>Submenus: Exit current submenu</td>
</tr>
<tr>
<td><code><F1></code></td>
<td>Show descriptions of general help</td>
</tr>
<tr>
<td><code><F3></code></td>
<td>Restore the previous BIOS settings for the current submenus</td>
</tr>
<tr>
<td><code><F9></code></td>
<td>Load the Optimized BIOS default settings for the current submenus</td>
</tr>
<tr>
<td><code><F10></code></td>
<td>Save all the changes and exit the BIOS Setup program</td>
</tr>
</tbody>
</table>
- Main -
This setup page includes all the items in standard compatible BIOS.

- Advanced -
This setup page includes all the items of AMI BIOS special enhanced features.
(ex: Auto detect fan and temperature status, automatically configure hard disk parameters.)

- Chipset -
This setup page includes all the submenu options for configuring the function of processor, network, North Bridge, South Bridge, and System event logs.

- Server Management -
Server additional features enabled/disabled setup menus.

- Security -
Change, set, or disable supervisor and user password. Configuration supervisor password allows you to restrict access to the system and BIOS Setup.
A supervisor password allows you to make changes in BIOS Setup.
A user password only allows you to view the BIOS settings but not to make changes.

- Boot -
This setup page provides items for configuration of boot sequence.

- Save & Exit -
Save all the changes made in the BIOS Setup program to the CMOS and exit BIOS Setup. (Pressing <F10> can also carry out this task.)
Abandon all changes and the previous settings remain in effect. Pressing <Y> to the confirmation message will exit BIOS Setup. (Pressing <Esc> can also carry out this task.)
5-1 The Main Menu

Once you enter the BIOS Setup program, the Main Menu (as shown below) appears on the screen. Use arrow keys to move among the items and press <Enter> to accept or enter other sub-menu.

Main Menu Help

The on-screen description of a highlighted setup option is displayed on the bottom line of the Main Menu.

Submenu Help

While in a submenu, press <F1> to display a help screen (General Help) of function keys available for the menu. Press <Esc> to exit the help screen. Help for each item is in the Item Help block on the right side of the submenu.

- When the system is not stable as usual, select the Restore Defaults item to set your system to its defaults.
- The BIOS Setup menus described in this chapter are for reference only and may differ by BIOS version.
Project Name
Displays the project name information.

Project Version
Displays version number of the BIOS setup utility.

Build Date and Time
Displays the date and time when the BIOS setup utility was created.

BMC Information(Note)

BMC Firmware Version(Note)
Displays BMC firmware version information.

Processor Information

CPU Brand String/Max CPU Speed/CPU Signature/Processors Core/Microcode Patch
Displays the technical specifications for the installed processor.

Platform Information

Processor/PCH/RC Revision
Displays the information for the installed platform.

Memory Information

Total Memory(Note)
Displays the total memory size of the installed memory.

Memory Frequency(Note)
Displays the frequency information of the installed memory.

Onboard LAN Information
LAN MAC Address\(^{\text{(Note)}}\)
Displays LAN MAC address information.

System Date
Sets the date following the weekday-month-day-year format.

System Time
Sets the system time following the hour-minute-second format.

(Note) Functions available on selected models.
5-2 Advanced Menu

The Advanced menu display submenu options for configuring the function of various hardware components. Select a submenu item, then press Enter to access the related submenu screen.
5-2-1 iSCSI Configuration

- iSCSI Initiator Name
 - Add an Attempt
 Press [Enter] for configuration of advanced items.
 - Delete Attempts
 Press [Enter] for configuration of advanced items.
 - Change Attempt Order
 Press [Enter] for configuration of advanced items.
5-2-2 Intel(R) Virtual RAID on CPU

Press [Enter] to manage Intel® Virtual RAID on the CPU.
5-2-3 Intel(R) Ethernet Connection X722
Intel(R) Ethernet Connection X722 for 10GBASE-T

Intel(R) Ethernet Connection X722 for 10GbE

NIC Configuration
Press [Enter] for configuration of advanced items of the selected network device port.

Blink LEDs
Identifies the physical network port by blinking the associated LED.
Press the numeric keys to adjust desired values.

UEFI Driver
Displays the technical specifications for the Network Interface Controller.
- Adapter PBA
 Displays the technical specifications for the Network Interface Controller.

- Device Name
 Displays the technical specifications for the Network Interface Controller.

- Chip Type
 Displays the technical specifications for the Network Interface Controller.

- PCI Device ID
 Displays the technical specifications for the Network Interface Controller.

- PCI Address
 Displays the technical specifications for the Network Interface Controller.

- Link Status
 Displays the technical specifications for the Network Interface Controller.

- MAC Address
 Displays the technical specifications for the Network Interface Controller.

- Virtual MAC Address
 Displays the technical specifications for the Network Interface Controller.
5-2-3-1 NIC Configuration

- **Link Speed**
 Allows for automatic link speed adjustment. Default setting is **Auto Negotiated**.

- **Wake On LAN**
 Enables power on of the system via LAN. Note that configuring Wake on LAN in the operating system does not change the value of this setting, but does override the behavior of Wake on LAN in OS controlled power states.
 Options available: Enabled/Disabled. Default setting is **Enabled**.
5-2-4 Trusted Computing

Configuration

Security Device Support
Enable/Disable the TPM support feature.
Options available: Enable/Disable. Default setting is **Enable**.

Current Status Information
Displays current TPM status information.
5-2-5 Serial Port Console Redirection

- **COM1/COM2 Serial Over LAN Console Redirection**
 Select whether to enable console redirection for specified device. Console redirection enables the users to manage the system from a remote location.
 Options available: Enabled/Disabled. Default setting is **Disabled**.

- **Legacy Console Redirection**
 Selects a COM port for Legacy serial redirection. The options are dependent on the available COM ports.

- **Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS) Console Redirection**
 Selects a COM port for EMS console redirection. EMS console redirection allows the user to configure Console Redirection Settings to support Out-of-Band Serial Port management.
 Options available: Enabled/Disabled. Default setting is **Disabled**.

- **COM1/COM2 Serial Over LAN/Legacy/Serial Port for Out-of-Band EMS Console Redirection Settings**
 Press [Enter] for configuration of advanced items.
 Please note that this item is configurable when COM1/COM2 Serial Over LAN/Serial Port for Out-of-Band Management EMS Console Redirection is set to Enabled.
5-2-5-1 COM1/COM2 Serial Over LAN/Legacy/Serial Port for Out-of-Band EMS

Console Redirection Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console Redirection Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Type</td>
<td>[ANSI]</td>
<td></td>
</tr>
<tr>
<td>Bits per second</td>
<td>[115200]</td>
<td></td>
</tr>
<tr>
<td>Data Bits</td>
<td>[8]</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>[None]</td>
<td></td>
</tr>
<tr>
<td>Stop Bits</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>Flow Control</td>
<td>[None]</td>
<td></td>
</tr>
<tr>
<td>VT-UTF8 Combo Key Support</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Recorder Mode</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>Resolution 100x31</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Legacy OS Redirection Resolution</td>
<td>[80x24]</td>
<td></td>
</tr>
<tr>
<td>Putty KeyPad</td>
<td>[VT100]</td>
<td></td>
</tr>
<tr>
<td>Redirection After BIOS POST</td>
<td>[Always Enable]</td>
<td></td>
</tr>
</tbody>
</table>

COM2/Serial Over LAN

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console Redirection Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Type</td>
<td>[ANSI]</td>
<td></td>
</tr>
<tr>
<td>Bits per second</td>
<td>[115200]</td>
<td></td>
</tr>
<tr>
<td>Data Bits</td>
<td>[8]</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>[None]</td>
<td></td>
</tr>
<tr>
<td>Stop Bits</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>Flow Control</td>
<td>[None]</td>
<td></td>
</tr>
<tr>
<td>VT-UTF8 Combo Key Support</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Recorder Mode</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>Resolution 100x31</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Legacy OS Redirection Resolution</td>
<td>[80x24]</td>
<td></td>
</tr>
<tr>
<td>Putty KeyPad</td>
<td>[VT100]</td>
<td></td>
</tr>
<tr>
<td>Redirection After BIOS POST</td>
<td>[Always Enable]</td>
<td></td>
</tr>
</tbody>
</table>
COM1/COM2 Serial Over LAN Console Redirection Settings

Terminal Type
Selects a terminal type to be used for console redirection.
Options available: VT100/VT100+/ANSI /VT-UTF8. Default setting is **ANSI**.

Bits per second
Selects the transfer rate for console redirection.
Options available: 9600/19200/38400/57600/115200. Default setting is **115200**.

Data Bits
Selects the number of data bits used for console redirection.
Options available: 7/8. Default setting is **8**.
Parity
A parity bit can be sent with the data bits to detect some transmission errors.
Even: parity bit is 0 if the num of 1's in the data bits is even.
Odd: parity bit is 0 if num of 1's in the data bits is odd.
Mark: parity bit is always 1. Space: Parity bit is always 0.
Mark and Space Parity do not allow for error detection.
Options available: None/Even/Odd/Mark/Space. Default setting is None.

Stop Bits
Stop bits indicate the end of a serial data packet. (A start bit indicates the beginning). The standard setting is 1 stop bit. Communication with slow devices may require more than 1 stop bit.
Options available: 1/2. Default setting is 1.

Flow control
Flow control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to re-start the flow. Hardware flow control uses two wires to send start/stop signals.
Options available: None/Hardware RTS/CTS. Default setting is None.

VT-UTF8 Combo Key Support
Enable/Disable the VT-UTF8 Combo Key Support.
Options available: Enabled/Disabled. Default setting is Enabled.

Recorder Mode (Note)
When this mode enabled, only texts will be send. This is to capture Terminal data.
Options available: Enabled/Disabled. Default setting is Disabled.

Resolution 100x31 (Note)
Enable/Disable extended terminal resolution.
Options available: Enabled/Disabled. Default setting is Enabled.

Legacy OS Redirection Resolution (Note)
Specifies the number of Rows and Columns supported for the Legacy OS redirection.
Options available: 80x24/80x25. Default setting is 80x24.

Putty KeyPad (Note)
Selects FunctionKey and KeyPad on Putty.
Options available: T100/LINUX/XTERMR6/SCO/ESCN/VT400. Default setting is VT100.

Redirection After BIOS POST (Note)
This item allows user to enable console redirection after O.S has loaded.
Options available: Always Enable/Boot Loader. Default setting is Always Enable.

Legacy Console Redirection Settings
Selects a COM port to display redirection of Legacy OS and Legacy OPROM Messages.
Options available: COM1/COM2 Serial Over LAN. Default setting is COM1.

Out-of-Band Mgmt Port
Microsoft Windows Emerency Management Service (EMS) allows for remote management of a Windows Server OS through a serial port.
Options available: COM1/COM2 Serial Over LAN. Default setting is COM1.

(Note) Advanced items prompt when this item is defined.
5-2-6 SIO Configuration

AMI SIO Driver Version : A5.07.03
Super IO Chip Logical Device(s) Configuration

[Active] Serial Port 1
[Active] Serial Port 2

WARNING: Logical Devices state on the left side of the control...

---: Select Screen
[T]: Select Item
Enter: Select
+/ -: Change Opt.
F1: General Help
F3: Previous Values
F9: Optimized Defaults
F10: Save & Exit
ESC: Exit

Serial Port 1 Configuration

Use This Device: [Enabled]
Logical Device Settings:
Current: IO=3F8h; IRQ=4;
Possible: [Use Automatic Settings]

WARNING: Disabling SIO Logical Devices may have unwanted side...

---: Select Screen
[T]: Select Item
Enter: Select
+/ -: Change Opt.
F1: General Help
F3: Previous Values
F9: Optimized Defaults
F10: Save & Exit
ESC: Exit
AMI SIO Driver Version
Displays the AMI SIO driver version information.

Super IO Chip Logical Device(s) Configuration

[*Active*] Serial Port 1/Serial Port 2
Press [Enter] for configuration of advanced items.

Serial Port 1/Serial Port 2 Configuration

Use This Device
When set to Enabled allows you to configure the Serial port 1/Serial port 2 settings. When set to Disabled, displays no configuration for the serial port.
Options available: Enabled/Disabled. Default setting is Enabled.

Logical Device Settings

Current:
Displays the Serial Port 1/Serial port 2 base I/O address and IRQ.

Possible:
Configures the Serial Port 1/Serial port 2 base I/O address and IRQ.
Options available for Serial Port 1:
Use Automatic Settings
IO=3F8h; IRQ=4; DMA;
IO=3F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=2F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=3E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=2E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
Default setting is Use Automatic Settings.
Options available for Serial Port 2:
Use Automatic Settings
IO=2F8h; IRQ=3; DMA;
IO=3F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=2F8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=3E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
IO=2E8h; IRQ=3, 4, 5, 7, 9, 10, 11, 12; DMA;
Default setting is **Use Automatic Settings**.
5-2-7 PCI Subsystem Settings

PCI Bus Driver Version
Displays the PCI Bus Driver version information.

PCI Express Slot #1/#2/#3/#4/#5/#6/#7/#8 I/O ROM (Note)
When enabled, this setting will initialize the device expansion ROM for the related PCI-E slot.
Options available: Enabled/Disabled. Default setting is Enabled.

Onboard LAN1 Controller (Note)
Enable/Disable the onboard LAN1 devices.
Options available: Enabled/Disabled. Default setting is Enabled.

Onboard LAN #1/#2/#3/#4 I/O ROM (Note)
Enable/Disable the onboard LAN devices, and initializes device expansion ROM.
Options available for LAN #1: Enabled/Disabled. Default setting is Enabled.
Options available for LAN #2/#3/#4: Disabled/UEFI/Legacy. Default setting is UEFI.

PCI Devices Common Settings

Above 4G Decoding
Enable/Disable memory mapped I/O to 4GB or greater address space (Above 4G Decoding).
Options available: Enabled/Disabled. Default setting is Disabled.

SR-IOV Support
If the system has SR-IOV capable PCIe devices, this item Enable/Disable Single Root IO Virtualization Support.
Options available: Enabled/Disabled. Default setting is Enabled.

(Note) Functions available on selected models.
5-2-8 Network Stack

Network stack
Enable/Disable the UEFI network stack.
Options available: Enabled/Disabled. Default setting is Enabled.

ipv4 PXE Support(Note)
Enable/Disable the Ipv4 PXE feature.
Options available: Enabled/Disabled. Default setting is Enabled.

ipv4 HTTP Support(Note)
Enable/Disable the Ipv4 HTTP feature.
Options available: Enabled/Disabled. Default setting is Disabled.

ipv6 PXE Support(Note)
Enable/Disable the Ipv6 PXE feature.
Options available: Enabled/Disabled. Default setting is Disabled.

ipv6 HTTP Support(Note)
Enable/Disable the Ipv6 HTTP feature.
Options available: Enabled/Disabled. Default setting is Disabled.

PXE boot wait time(Note)
Press the <+>/ <-> keys to increase or decrease the desired values.

Media detect count(Note)
Press the <+>/ <-> keys to increase or decrease the desired values.

(Note) This item appears when Network Stack is set to Enabled.
5-2-9 CSM Configuration

- Compatibility Support Module Configuration

- CSM Support(Note)
 Enable/Disable the Compatibility Support Module (CSM) support. Options available: Enabled/Disabled. Default setting is Disabled.

- CSM16 Module Version
 Displays the CSM module version information. Please note that this item is configurable when CSM Support is set to Enabled.

(Note) Advanced items prompt when this item is set to Enabled.
GateA20 Active
When set to Upon Request, GA20 can be disabled using BIOS services. When set to Always, GA20 cannot be disabled; this option is useful when any RT code is executed above 1MB.
Options available: Upon Request/Always. Default setting is Upon Request.
Please note that this item is configurable when CSM Support is set to Enabled.

INT19 Trap Response
Configures BIOS reaction on INT19 trapping by Option ROM. When set to Immediate, the system executes the trap right away. When set to Postponed, the system executes the trap during legacy boot.
Options available: Immediate/Postponed. Default setting is Immediate.
Please note that this item is configurable when CSM Support is set to Enabled.

INT19 Endless Retry
Enable/Disable headless retry boot.
Options available: Enabled/Disabled. Default setting is Enabled.
Please note that this item is configurable when CSM Support is set to Enabled.

Option ROM execution

Network
Controls the execution of UEFI and Legacy PXE Option ROM.
Options available: Do not launch/UEFI/Legacy. Default setting is UEFI.
Please note that this item is configurable when CSM Support is set to Enabled.

Storage
Controls the execution of UEFI and Legacy Storage Option ROM.
Options available: Do not launch/UEFI/Legacy. Default setting is UEFI.
Please note that this item is configurable when CSM Support is set to Enabled.

Video
Controls the execution of UEFI and Legacy Video Option ROM.
Options available: Do not launch/UEFI/Legacy. Default setting is UEFI.
Please note that this item is configurable when CSM Support is set to Enabled.

Other PCI devices
Determines Option ROM execution policy for devices other than Network, Storage, or Video.
Options available: Do not launch/UEFI/Legacy. Default setting is UEFI.
Please note that this item is configurable when CSM Support is set to Enabled.
5-2-10 Post Report Configuration

- Error Message Report
- Post Error Message

- Post Error Message
 Enable/Disable the POST Error Message support.
 Options available: Enabled/Disabled. Default setting is Enabled.
5-2-11 NVMe Configuration

NVMe Configuration
Displays the NVMe devices connected to the system.
5-2-12 USB Configuration

ḁ USB Configuration

ḁ USB Devices:
Displays the USB devices connected to the system.

ḁ XHCI Hand-off
Enable/Disable the XHCI (USB 3.0) Hand-off support.
Options available: Enabled/Disabled. Default setting is Enabled.

ḁ USB Mass Storage Driver Support(Note)
Enable/Disable the USB Mass Storage Driver Support.
Options available: Enabled/Disabled. Default setting is Enabled.

ḁ Port 60/64 Emulation
Enables the I/O port 60h/64h emulation support. This should be enabled for the complete USB Keyboard Legacy support for non-USB aware OS.
Options available: Enabled/Disabled. Default setting is Enabled.

(Note) This item is present only if you attach USB devices.
5-2-13 Chipset Configuration

- **Restore on AC Power Loss** *(Note)*
 Defines the power state to resume to after a system shutdown that is due to an interruption in AC power. When set to Last State, the system will return to the active power state prior to shutdown. When set to Stay Off, the system remains off after power shutdown.
 Options available: Last State/Stay Off/Power On. The default setting depends on the BMC setting.

- **Chassis Opened Warning**
 Enable/Disable the chassis intrusion alter function.
 Options available: Enabled/Disabled. Default setting is **Disabled**.

(Note) When the power policy is controlled by BMC, please wait for 15-20 seconds for BMC to save the last power state.
5-3 Chipset Setup Menu

Chipset Setup menu displays submenu options for configuring the function of North Bridge and South Bridge. Select a submenu item, then press Enter to access the related submenu screen.
5-3-1 Processor Configuration

Pre-Socket Configuration

Press [Enter] for configuration of advanced items.

Processor Socket/Processor ID/Processor Frequency/Processor Max Ratio/
Processor Min Ratio/Microcode Revision/L1 Cache RAM/L2 Cache RAM/L3 Cache RAM/
Processor 0/1 Version

Displays the technical specifications for the installed processor.
Hyper-Threading [All]
The Hyper Threading Technology allows a single processor to execute two or more separate threads concurrently. When hyper-threading is enabled, multi-threaded software applications can execute their threads, thereby improving performance.
Options available: Enable/Disable. Default setting is Enable.

Enable Intel(R) TXT
Enables or disables the Intel Trusted Execution Technology support function.
Options available: Enable/Disable. Default setting is Disable.

VMX (Vanderpool Technology)
Enable/Disable the Vanderpool Technology. This will take effect after rebooting the system.
Options available: Enable/Disable. Default setting is Enable.

Enable SMX
Enable/Disable the Secure Mode Extensions (SMX) support function.
Options available: Enable/Disable. Default setting is Disable.

Hardware Prefetcher
Select whether to enable the speculative prefetch unit of the processor.
Options available: Enable/Disable. Default setting is Disable.

Adjacent Cache Prefetch
When enabled, cache lines are fetched in pairs. When disabled, only the required cache line is fetched.
Options available: Enable/Disable. Default setting is Enable.

DCU Streamer Prefetch
Prefetches the next L1 data line based upon multiple loads in same cache line.
Options available: Enable/Disable. Default setting is Enable.

DCU IP Prefetch
Prefetches the next L1 Data line based upon sequential load history.
Options available: Enable/Disable. Default setting is Enable.

AES-NI
Enable/Disable the AES-NI (Intel Advanced Encryption Standard New Instructions) support function.
Options available: Enable/Disable. Default setting is Enable.
5-3-1-1 Pre-Socket Configuration

![Pre-Socket Configuration Screen](image1)

CPU Socket 0 Configuration
Core Disable Bitmap(Hex) 0

![Pre-Socket Configuration Screen](image2)

CPU Socket 0 Configuration
0: Enable all cores.
FFFFFF: Disable all cores

Legend:
- Select Screen
- Select Item
- Enter: Select
- +/- Change Opt.
- F1: General Help
- F3: Previous Values
- F9: Optimized Defaults
- F10: Save & Exit
- ESC: Exit
CPU Socket 0/1 Configuration

Press [Enter] for configuration of advanced items.

Core Disable Bitmap(Hex) (for CPU socket 0/1)

Number of Cores to enable. 0 means all cores. FFFFFFFF means to disable all cores. The maximum value depends on the number of CPUs available. Press the numeric keys to adjust desired values.
5-3-2 Common RefCode Configuration

- **Common RefCode Configuration**

- **MMIO High Base**
 Selects the MMIO High Base setting.
 Options available: 56T/40T/24T/16T/4T/1T. Default setting is **56T**.

- **MMIO High Granularity Size**
 Selects the allocation size used to assign mmioh resources. Total mmioh space can be up to 32xgranularity. Per stack mmioh resource assignments are multiples of the granularity where 1 unit per stack is the default allocation.
 Options available: 1G/4G/16G/64G/256G/1024G. Default setting is **256G**.

- **Isoc Mode**
 Options available: Auto/Enable/Disable. Default setting is **Auto**.

- **Numa (Non-Uniform Memory Access)**
 Enable/Disable Non-uniform Memory Access (NUMA).
 Options available: Enable/Disable. Default setting is **Enable**.
5-3-3 UPI Configuration

UPI Configuration

UPI General Configuration

Displays and provides option to change the UPI General Settings

++: Select Screen
%=: Select Item
Enter: Select
+/\: Change Opt.
F1: General Help
F3: Previous Values
F9: Optimized Defaults
F10: Save & Exit
ESC: Exit

UPI General Configuration

UPI Status

Link Frequency Select [Auto]

UPI Status Help

++: Select Screen
%=: Select Item
Enter: Select
+/\: Change Opt.
F1: General Help
F3: Previous Values
F9: Optimized Defaults
F10: Save & Exit
ESC: Exit
UPI General Configuration
Press [Enter] to change the UPI general settings.

UPI Status
Press [Enter] to view the UPI status.

Link Frequency Select
Selects the UPI link frequency.
Options available: 9.6GB/10.4GB/Auto. Default setting is Auto.
5-3-4 Memory Configuration

- Integrated Memory Controller (iMC)

- Enforce POR
 When set to Enable, the system enforces Plan Of Record restrictions for DDR4 frequency and voltage programming. When set to Auto, the system sets it to the MRC default settings.
 Options available: Auto/POR/Disable. Default setting is Enable.

- Memory Frequency
 Configures the memory frequency.
 Options available: Auto/2133/2400/2666. Default setting is Auto.

- Enable ADR
 Enables the detecting and enabling of ADR.
 Options available: Enable/Disable. Default setting is Enable.

- Legacy ADR Mode
 Enable/Disable the Legacy ADR Mode.
 Options available: Enable/Disable. Default setting is Disable.

- ADR Data Save Mode
 Data Save Mode for ADR, Batterybacked or Type 01 NVDIMM.
 Options available: Disable/Batterybacked DIMMs/NVDIMMs. Default setting is NVDIMMs.

- Erase-ARM NVDIMMs
 Enable/Disable Erasing and Arming NVDIMMs.
 Options available: Enable/Disable. Default setting is Enable.

- Restore NVDIMMs
 Enable/Disable Automatic restoring of NVDIMMs.
 Options available: Enable/Disable. Default setting is Enable.
Interleave NVDIMMs
Controls if NVDIMMs are interleaved together or not.
Options available: Enable/Disable. Default setting is **Disable**.

Memory Topology
Press [Enter] for configuration of advanced items.

Memory RAS Configuration
Press [Enter] for configuration of advanced items.
5-3-4-1 Memory Topology

DIMM_P0_A0: 2133MT/s Micron DRx8 8GB RDIMM
Memory RAS Configuration Setup

- **RAS Type**
 Displays the RAS type.

- **Static Virtual Lockstep Mode**
 Enable/Disable the Static Virtual Lockstep mode.
 Options available: Disable/Enable. Default setting is **Disable**.

- **Mirror Mode**
 Mirror Mode will set entire 1LM/2LM memory in system to be mirrored, consequently reducing the memory capacity by half. Enables the Mirror Mode will disable the XPT Prefetch.
 Options available: Disable/Mirror Mode 1LM/Mirror Mode 2LM. Default setting is **Disable**.

- **Memory Rank Sparing**
 Enable/Disable Memory Rank Sparing.
 Options available: Disable/Enable. Default setting is **Disable**.

- **Correctable Error Threshold**
 Correctable Error Threshold (1-32767) used for sparing, tagging, and leaky bucket.
 Press the <+> / <-> keys to increase or decrease the desired values.

- **SDDC Plus One**
 Enable/Disable SDDC Pluse One.
 Options available: Disable/Enable. Default setting is **Disable**.
5-3-5 IIO Configuration

- IIO Configuration
- Intel® VT for Directed I/O (VT-d)
 - Press [Enter] for configuration of advanced items.
- Inter® VMD technology
 - Press [Enter] for configuration of advanced items.
5-3-5-1 Intel® VT for Directed I/O (VT-d)

- **Intel® VT for Directed I/O (VT-d)**
 Enable/Disable the Intel VT for Directed I/O (VT-d) support function by reporting the I/O device assignment to VMM through DMAR ACPI Tables.
 Options available: Enable/Disable. Default setting is **Enable**.

- **ACS Control**
 Enable: Programs ACS only to Chipset Pcie Root Ports Bridges.
 Disable: Programs ACS to all PCIe bridges.
 Default setting is **Enable**.

- **Interrupt Remapping**
 Enable/Disable the interrupt remapping support function.
 Options available: Enable/Disable. Default setting is **Enable**.

- **PassThrough DMA**
 Enable/Disable the Non-Isoch VT_D Engine PassThrough DMA support function.
 Options available: Enable/Disable. Default setting is **Enable**.

- **ATS**
 Enable/Disable Non-Isoch VT_D Engine ATS support.
 Options available: Enable/Disable. Default setting is **Enable**.

- **Posted Interrupt**
 Enable/Disable VT_D posted interrupt.
 Options available: Enable/Disable. Default setting is **Enable**.

- **Coherency Support (Non-Isoch)**
 Enable/Disable Non-Isoch VT_D Engine Coherency support.
 Options available: Enable/Disable. Default setting is **Enable**.
5-3-5-2 Intel® VMD Technology

- Intel® VMD technology
- Intel® VMD Configuration

Enable/Disable the Intel VMD support function.
Options available: Enable/Disable. Default setting is Disable.
5-3-6 Advanced Power Management Configuration

Advanced Power Management Configuration

CPU P State Control
Press [Enter] for configuration of advanced items.

Hardware PM State Control
Press [Enter] to configure the Hardware P-State setting.

CPU C State Control
Press [Enter] for configuration of advanced items.

Package C State Control
Press [Enter] to configure the Package C State limit.

CPU - Advanced PM Tuning
Press [Enter] for configuration of advanced items.
5-3-6-1 CPU P State Control

- SpeedStep (Pstates)
 Conventional Intel SpeedStep Technology switches both voltage and frequency in tandem between high and low levels in response to processor load.
 Options available: Enable/Disable. Default setting is Enable.

- Turbo Mode
 When this item is enabled, the processor will automatically ramp up the clock speed of 1-2 of its processing cores to improve its performance.
 When this item is disabled, the processor will not overclock any of its core.
 Options available: Enable/Disable. Default setting is Enable.
5-3-6-2 Hardware PM State Control

Hardware P-States
When this item is disabled, the processor hardware chooses a P-state based on OS Request (Legacy P-States).
In Native mode, the processor hardware chooses a P-state based on OS guidance.
In Out of Band mode, the processor hardware autonomously chooses a P-state (with no OS guidance).
Options available: Disable/Native Mode/Out of Band Mode/Native Mode with No Legacy Support.
Default setting is Native Mode.
5-3-6-3 CPU C State Control

Autonomous Core C-State
Enable/Disable the Autonomous Core C-State Control.
Options available: Enable/Disable. Default setting is Disable.

CPU C6 Report
Allows you to determine whether to let the CPU enter C6 mode in system halt state. When enabled, the CPU core frequency and voltage will be reduced during system halt state to decrease power consumption. The C6 state is a more enhanced power-saving state than C1.
Options available: Disable/Enable/Auto. Default setting is Auto.

Enhanced Halt State (C1E)(Note)
Core C1E auto promotion control. Takes effect after reboot.
Options available: Enable/Disable. Default setting is Enable.

OS ACPI Cx
Reports CPU C3/C6 to OS ACPI C2 or ACPI C3.
Options available: ACPI C2/ACPI C3. Default setting is ACPI C2.

(Note) Advanced items prompt when this item is defined.
5-3-6-4 Package C State Control

Package C State Control

Package C State [Auto]

Package C State limit

*: Select Screen
F1: Select Item
Enter: Select
+/-: Change Opt.
F1: General Help
F3: Previous Values
F4: Optimized Defaults
F10: Save & Exit
ESC: Exit

Package C-State
Configs the state for the C-State package limit.
Options available: C0/C1 state/C2 state/C6(non Retention) state/C6(Retention) state/No Limit/Auto.
Default setting is Auto.
5-3-6-5 CPU-Advanced PM Tuning

Energy Perf BIAS
Enters the Energy Perf BIAS submenu.

Power Performance Tuning(Note)
Tunes the Power Performance Configuration mode. When enabled, uses IA32_ENERGY_PERF_BIAS input from the core. When disabled, uses alternate performance BIAS input from ENERGY_PERF_BIAS_CONFIG.

Options available: OS Controls EPB/BIOS Controls EPB. Default setting is OS Controls EPB.

(Note) Advanced items prompt when this item is set to BIOS Controls EPB.
ENERGY_PERF_BIAS_CFG mode
Selects the Energy Performance Bias Configuration Mode.
Options available: Performance/Balanced Performance/Balanced Power/Power.
Default setting is Balanced Performance.
Please note that this item is configurable when Power Performance Tuning is set to BIOS Controls EPB.
5-3-7 PCH Configuration

☞ PCH Configuration
☞ PCH SATA Configuration
 Press [Enter] for configuration of advanced items.
☞ PCH sSATA Configuration
 Press [Enter] for configuration of advanced items.
5-3-7-1 PCH SATA Configuration

- **PCH SATA Configuration**

- **SATA Controller(s)**

 Enable/Disable SATA controller.

 Options available: Enable/Disable. Default setting is **Enable**.

- **Configure SATA as**

 Configure on chip SATA type.

 AHCI Mode: When set to AHCI, the SATA controller enables its AHCI functionality. Then the RAID function is disabled and cannot be access the RAID setup utility at boot time.
RAID Mode: When set to RAID, the SATA controller enables both its RAID and AHCI functions. You will be allowed access the RAID setup utility at boot time.
Options available: AHCI/RAID. Default setting is AHCI.

- **Alternate Device ID on RAID** *(Note 1)*
 Enable/Disable Alternate Device ID on RAID mode.
 Options available: Enable/Disable. Default setting is Disabled.
 Please note that this option appears when HDD is in RAID Mode.

- **SATA Port 0/1/2/3/4/5/6/7**
The category identifies SATA hard drives that are installed in the computer.
System will automatically detect HDD type.

- **Port 0/1/2/3/4/5/6/7**
 Enable/Disable Port 0/1/2/3/4/5/6/7 device.
 Options available: Enable/Disable. Default setting is Enable.

- **Hot Plug (for Port 0/1/2/3/4/5/6/7)** *(Note 2)*
 Enable/Disable HDD Hot-Plug function.
 Options available: Enable/Disable. Default setting is Disable.

- **Spin Up Device (for Port 0/1/2/3/4/5/6/7)** *(Note 2)*
 On an edge detect from 0 to 1, the PCH starts a COM reset initialization to the device.
 Options available: Enable/Disable. Default setting is Disable.

(Note 1) Only appears when HDD sets to RAID Mode.
(Note 2) Only Supported when HDD is in AHCI or RAID Mode.
PCH sSATA Configuration

sSATA Controller(s)
Enable/Disable sSATA controller.
Options available: Enable/Disable. Default setting is **Enable**.

Configure sSATA as
Configure on chip SATA type.
AHCI Mode: When set to AHCI, the SATA controller enables its AHCI functionality. Then the RAID function is disabled and cannot be access the RAID setup utility at boot time.
RAID Mode: When set to RAID, the SATA controller enables both its RAID and AHCI functions. You will be allowed access the RAID setup utility at boot time.
Options available: AHCI/RAID. Default setting is AHCI.

- Alternate Device ID on RAID\(^{\text{Note 1}}\)
 Enable/Disable Alternate Device ID on RAID mode.
 Options available: Enable/Disable. Default setting is Disabled
 Please note that this option appears when HDD is in RAID Mode.

- sSATA Port 0/1/2/3/4/5
 The category identifies sSATA hard drives that are installed in the computer.
 System will automatically detect HDD type.

- Port 0/1/2/3/4/5
 Enable/Disable Port 0/1/2/3/4/5 device.
 Options available: Enable/Disable. Default setting is Enable.

- Hot Plug (for Port 0/1/2/3/4/5)\(^{\text{Note 2}}\)
 Enable/Disable HDD Hot-Plug function.
 Options available: Enable/Disable. Default setting is Disable.

- Spin Up Device (for Port 0/1/2/3/4/5)\(^{\text{Note 2}}\)
 On an edge detect from 0 to 1, the PCH starts a COM reset initialization to the device.
 Options available: Enable/Disable. Default setting is Disabled

\(^{\text{Note 1}}\) Only appears when HDD sets to RAID Mode.
\(^{\text{Note 2}}\) Only supported when HDD is in AHCI or RAID Mode.
5-3-8 Miscellaneous Configuration

Miscellaneous Configuration

Active Video
Selects the active video type.
Options available: Auto/Onboard Device/PCIE Device. Default setting is Auto.
Server ME Configuration

General ME Configuration

- **Oper. Firmware Version**: Displays Operational Firmware version information.
- **ME Firmware Status #1**: Displays ME Firmware status information.
- **Current State (for ME Firmware)**: Displays ME Firmware current status information.
- **Error Code (for ME Firmware)**: Displays ME Firmware status error code.
- **Recovery Cause (for ME Firmware)**: Displays ME Firmware recovery cause.
- **PTT Support**: Displays if the system supports the Intel® Platform Trust Technology.
5-3-10 Runtime Error Logging

♫ Runtime Error Logging
♫ System Errors
 Enable/Disable system error logging function.
 Options available: Enable/Disable. Default setting is Enable.
♫ S/W Error Injection Support
 Enable/Disable software injection error logging function.
 Options available: Enable/Disable. Default setting is Disable.
♫ Whea Settings
 Press [Enter] for configuration of advanced items.
♫ Memory Error Enabling
 Press [Enter] for configuration of advanced items.
♫ PCIe Error Enabling
 Press [Enter] for configuration of advanced items.
5-3-10-1 Whea Settings

-WHEA Support (Windows Hardware Error Architecture)
Enable/Disable WHEA Support.
Options available: Enable/Disable. Default setting is Enable.
5-3-10-2 Memory Error Enabling

<table>
<thead>
<tr>
<th>Memory Error</th>
<th>Enable/Disable Memory Error</th>
<th>Memory Corrected Error</th>
<th>Enable/Disable Memory Corrected Error</th>
<th>Uncorrected Error disable Memory</th>
<th>Enable/Disable the Memory that triggers Uncorrected Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Disable</td>
</tr>
</tbody>
</table>

- **Memory Error**

 Enable/Disable Memory Error.

 Options available: Enable/Disable. Default setting is Enable.

- **Memory Corrected Error**

 Enable/Disable Memory Corrected Error.

 Options available: Enable/Disable. Default setting is Enable.

- **Uncorrected Error disable Memory**

 Enable/Disable the Memory that triggers Uncorrected Error.

 Options available: Enable/Disable. Default setting is Disable.
5-3-10-3 PCIe Error Enabling

Corrected Error
Enables and escalates Correctable Errors to error pins.
Options available: Enable/Disable. Default setting is Enable.

Uncorrected Error
Enables and escalates Uncorrectable/Recoverable Errors to error pins.
Options available: Enable/Disable. Default setting is Enable.

Fatal Error Enable
Enables and escalates Fatal Errors to error pins.
Options available: Enable/Disable. Default setting is Enable.

SERR Propagation
Enable/Disable SERR propagation.
Options available: Enable/Disable. Default setting is Enable.

PERR Propagation
Enable/Disable PERR propagation.
Options available: Enable/Disable. Default setting is Enable.
5-4 Server Management Menu

- FRB-2 Timer
 Enable/Disable FRB-2 timer (POST timer).
 Options available: Enabled/Disabled. Default setting is Disabled.

- FRB-2 Timer timeout
 Configure the FRB2 Timer timeout.
 Options available: 3 minutes/4 minutes/5 minutes/6 minutes. Default setting is 6 minutes.
 Please note that this item is configurable when FRB-2 Timer is set to Enabled.

- FRB-2 Timer Policy
 Configure the FRB2 Timer policy.
 Options available: Do Nothing/Reset/Power Down. Default setting is Do Nothing.
 Please note that this item is configurable when FRB-2 Timer is set to Enabled.

- OS Watchdog Timer
 Enable/Disable OS Watchdog Timer function.
 Options available: Enabled/Disabled. Default setting is Disabled.

- OS Wtd Timer Timeout
 Configure OS Watchdog Timer.
 Options available: 5 minutes/10 minutes/15 minutes/20 minutes. Default setting is 10 minutes.
 Please note that this item is configurable when OS Watchdog Timer is set to Enabled.

- OS Wtd Timer Policy
 Configure OS Watchdog Timer Policy.
 Options available: Reset/Do Nothing/Power Down. Default setting is Reset.
 Please note that this item is configurable when OS Watchdog Timer is set to Enabled.
◆ System Event Log
 Press [Enter] for configuration of advanced items.
◆ View FRU Information
 Press [Enter] to view the advanced items.
◆ BMC network configuration
 Press [Enter] for configuration of advanced items.
◆ IPv6 BMC Network Configuration
 Press [Enter] for configuration of advanced items.
5-4-1 System Event Log

- Enabling/Disabling Options
 - SEL Components
 Change this item to enable or disable all features of System Event Logging during boot.
 Options available: Enabled/Disabled. Default setting is Enabled.

- Erasing Settings
 - Erase SEL
 Choose options for erasing SEL.
 Options available: No/Yes, On next reset/Yes, On every reset. Default setting is No.

- When SEL is Full
 Choose options for reactions to a full SEL.
 Options available: Do Nothing/Erase Immediately. Default setting is Do Nothing.

- Custom EFI Logging Options
 - Log EFI Status Codes
 Enable/Disable the logging of EFI Status Codes (if not already converted to legacy).
 Options available: Disabled/Both/Error code/Progress code. Default setting is Error code.
5-4-2 View FRU Information

The FRU page is a simple display page for basic system ID information, as well as System product information. Items on this window are non-configurable.

<table>
<thead>
<tr>
<th>FRU Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System Manufacturer</td>
<td>GIGABYTE</td>
</tr>
<tr>
<td>System Product Name</td>
<td>MD71-H00-00</td>
</tr>
<tr>
<td>System Version</td>
<td>0100</td>
</tr>
<tr>
<td>System Serial Number</td>
<td>0123456789012345678910</td>
</tr>
<tr>
<td>Board Manufacturer</td>
<td>GIGABYTE</td>
</tr>
<tr>
<td>Board Product Name</td>
<td>MD71-H00-00</td>
</tr>
<tr>
<td>Board Version</td>
<td>01234567</td>
</tr>
<tr>
<td>Board Serial Number</td>
<td>S1758300004</td>
</tr>
<tr>
<td>Chassis Manufacturer</td>
<td>GIGABYTE</td>
</tr>
<tr>
<td>Chassis Product Name</td>
<td>01234567</td>
</tr>
<tr>
<td>Chassis Serial Number</td>
<td>0123456789012345678910</td>
</tr>
</tbody>
</table>

(Note) The model name will vary depends on the product you purchased.
5-4-3 BMC Network Configuration

♫ Select NCSI and Dedicated LAN

Switch NCSI and dedicated LAN and send KCS command.
Options available: Do Nothing/Mode1 (Dedicated)/Mode2(NSCI)/Mode3 (Failover).
Default setting is Mode1 (Dedicated).

♫ Lan Channel 1

♫ Configuration Address source

Select to configure LAN channel parameters statically or dynamically (DHCP). Do nothing option will not
modify any BMC network parameters during BIOS phase.
Options available: Unspecified/Static/DynamicBmcDhcp. Default setting is DynamicBmcDhcp.

♫ Station IP address

Displays IP Address information.

♫ Subnet mask

Displays Subnet Mask information.
Please note that the IP address must be in three digits, for example, 192.168.000.001.

♫ Router IP address

Displays the Router IP Address information.

♫ Station MAC address

Displays the MAC Address information.

♫ Real-time synchronize BMC network parameter values

Press [Enter] to synchronize the BMC network parameter values.
IPv6 BMC Network Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 BMC Lan Channel 1</td>
<td>Enable/Disable IPv6 BMC LAN channel function. When this item is disabled, the system will not modify any BMC network during BIOS phase. Options available: Enable/Disable. Default setting is Enable.</td>
</tr>
<tr>
<td>IPv6 BMC Lan Option</td>
<td>Enable/Disable IPv6 BMC LAN channel function. Disable option will not modify any BMC network during BIOS Phase. Options available: Enable/Disable. Default setting is Enabled.</td>
</tr>
<tr>
<td>IPv6 BMC Lan IP Address Source</td>
<td>Select to configure LAN channel parameters statically or dynamically (by BIOS or BMC). Options available: Unspecified/Static/Dynamic-Obtained by BMC running DHCP. Default setting is Dynamic-Obtained by BMC running DHCP.</td>
</tr>
<tr>
<td>IPv6 BMC Lan IP Address/Prefix Length</td>
<td> Check if the IPv6 BMC LAN IP address matches those displayed on the screen.</td>
</tr>
</tbody>
</table>
5-5 Security Menu

The Security menu allows you to safeguard and protect the system from unauthorized use by setting up access passwords.

There are two types of passwords that you can set:

- Administrator Password
 Entering this password will allow the user to access and change all settings in the Setup Utility.

- User Password
 Entering this password will restrict a user's access to the Setup menus. To enable or disable this field, a Administrator Password must first be set. A user can only access and modify the System Time, System Date, and Set User Password fields.

☞ Administrator Password
 Press [Enter] to configure the administrator password.

☞ User Password
 Press [Enter] to configure the user password.

☞ Secure Boot
 Press [Enter] for configuration of advanced items.
5-5-1 Secure Boot

The Secure Boot submenu is applicable when your device is installed the Windows® 8 (or above) operating system.

- **System Mode**
 Displays the system is in User mode or Setup mode.

- **Secure Boot**
 Displays the Secure Boot function is actived or not actived.

- **Vendor Keys**
 Displays the Vendor Keys function is actived or not actived.

- **Attempt Secure Boot**
 Secure Boot activated when Platform Key (PK) is enrolled, System mode is User/Deployed, and CSM function is disabled.
 Options available: Enabled/Disabled. Default setting is Disabled.

- **Secure Boot Mode** *(Note)*
 Secure Boot requires all the applications that are running during the booting process to be pre-signed with valid digital certificates. This way, the system knows all the files being loaded before Windows loads and gets to the login screen have not been tampered with.
 When set to Standard, it will automatically load the Secure Boot keys from the BIOS databases.
 When set to Custom, you can customize the Secure Boot settings and manually load its keys from the BIOS database.
 Options available: Standard/Custom. Default setting is Custom.

- **Key Management**
 Press [Enter] for configuration of advanced items.
 Please note that this item is configurable when Secure Boot Mode is set to Custom.

(Note) Advanced items prompt when this item is set to Custom.
5-5-1-1 Key Management

Provision Factory Defaults
Allows to provision factory default Secure Boot keys when system is in Setup Mode.
Options available: Enabled/Disabled. Default setting is **Disabled**.

Install Factory Default Keys
Installs all factory default keys. It will force the system in User Mode.
Options available: Yes/No.

Enroll Efi Image
Press [Enter] to enroll SHA256 hash of the binary into Authorized Signature Database (db).

Save all Secure Boot variables
Press [Enter] to save all Secure Boot Keys and Key variables.

Secure Boot variable
Displays the current status of the variables used for secure boot.

Platform Key (PK)
Displays the current status of the Platform Key (PK).
Press [Enter] to configure a new PK.
Options available: Set New.

Key Exchange Keys (KEK)
Displays the current status of the Key Exchange Key Database (KEK).
Press [Enter] to configure a new KEK or load additional KEK from storage devices.
Options available: Set New/Append.

Authorized Signatures (DB)
Displays the current status of the Authorized Signature Database.
Press [Enter] to configure a new DB or load additional DB from storage devices.
Options available: Set New/Append.
Forbidden Signatures (DBX)
Displays the current status of the Forbidden Signature Database.
Press [Enter] to configure a new dbx or load additional dbx from storage devices.
Options available: Set New/Append.

Authorized TimeStamps (DBT)
Displays the current status of the Authorized TimeStamps Database.
Press [Enter] to configure a new DBT or load additional DBT from storage devices.
Options available: Set New/Append.

OsRecovery Signatures
Displays the current status of the OsRecovery Signature Database.
Press [Enter] to configure a new OsRecovery Signature or load additional OsRecovery Signature from storage devices.
Options available: Set New/Append.
5-6 Boot Menu

The Boot menu allows you to set the drive priority during system boot-up. BIOS setup will display an error message if the legacy drive(s) specified is not bootable.

![BIOS Setup Utility - Copyright (C) 2017 American Megatrends, Inc.]

- **Boot Configuration**
 - **Setup Prompt Timeout**
 Number of seconds to wait for setup activation key. 65535 (0xFFFF) means indefinite waiting. Press the numeric keys to input the desired values.
 - **Bootup NumLock State**
 Enable/Disable the Bootup NumLock function. Options available: On/Off. Default setting is On.
 - **Quiet Boot**
 Enable/Disable showing the logo during POST. Options available: Enabled/Disabled. Default setting is Enabled.
 - **Boot mode select**
 Selects the boot mode. Options available: LEGACY/UEFI. Default setting is UEFI.
 - **FIXED BOOT ORDER Priorities**
 - **Boot Option #1/#2/#3/#4/#5**
 Press [Enter] to configure the boot priority. By default, the server searches for boot devices in the following sequence:
 1. Hard drive.
 2. CD-COM/DVD drive.
 3. USB device.
 4. Network.
 5. UEFI.

![Aptio Setup Utility - Copyright (C) 2017 American Megatrends, Inc.]

Version 2.39.1288, Copyright (C) 2017 American Megatrends, Inc.
- UEFI Network Drive BBS Priorities
 Press [Enter] to configure the boot priority.
- UEFI Application Boot Priorities
 Press [Enter] to configure the boot priority.
5-6-1 UEFI NETWORK Drive BBS Priorities

The UEFI network drive BBS priorities submenu allows you to specify the boot device priority from the available UEFI network drives during system boot-up. BIOS setup will display an error message if the legacy drive(s) specified is not bootable.
5-6-2 UEFI Application Boot Priorities

The UEFI application boot priorities submenu allows you to specify the boot device priority from the available UEFI applications during system boot-up. BIOS setup will display an error message if the legacy drive(s) specified is not bootable.
5-7 Save & Exit Menu

The Exit menu displays the various options to quit from the BIOS setup. Highlight any of the exit options then press Enter.

- **Save Options**
 - **Save Changes and Exit**
 Saves changes made and closes the BIOS setup.
 Options available: Yes/No.

- **Discard Changes and Exit**
 Discards changes made and exits the BIOS setup.
 Options available: Yes/No.

- **Save Changes and Reset**
 Restarts the system after saving the changes made.
 Options available: Yes/No.

- **Discard Changes and Reset**
 Restarts the system without saving any changes.
 Options available: Yes/No.

- **Save Changes**
 Saves changes made in the BIOS setup.
 Options available: Yes/No.

- **Discard Changes**
 Discards changes made and closes the BIOS setup.
 Options available: Yes/No.
Default Options

Restore Defaults
Loads the default settings for all BIOS setup parameters. Setup Defaults are quite demanding in terms of resources consumption. If you are using low-speed memory chips or other kinds of low-performance components and you choose to load these settings, the system might not function properly.
Options available: Yes/No.

Save as User Defaults
Saves the changes made as the user default settings.
Options available: Yes/No.

Restore User Defaults
Loads the user default settings for all BIOS setup parameters.
Options available: Yes/No.

Boot Override
Press [Enter] to configure the device as the boot-up drive.
5-8 BIOS POST Codes

5-8-1 AMI Standard - PEI

<table>
<thead>
<tr>
<th>PEI_Core_Name</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEI_CORE_STARTED</td>
<td>0x10</td>
</tr>
<tr>
<td>PEI_CAR_CPU_INIT</td>
<td>0x11</td>
</tr>
<tr>
<td>PEI_CAR_NB_INIT</td>
<td>0x15</td>
</tr>
<tr>
<td>PEI_CAR_SB_INIT</td>
<td>0x19</td>
</tr>
<tr>
<td>PEI_MEMORY_SPD_READ</td>
<td>0x2B</td>
</tr>
<tr>
<td>PEI_MEMORY_PRESENCE_DETECT</td>
<td>0x2C</td>
</tr>
<tr>
<td>PEI_MEMORY_TIMING</td>
<td>0x2D</td>
</tr>
<tr>
<td>PEI_MEMORY_CONFIGURING</td>
<td>0x2E</td>
</tr>
<tr>
<td>PEI_MEMORY_INIT</td>
<td>0x2F</td>
</tr>
<tr>
<td>PEI_MEMORY_INSTALLED</td>
<td>0x31</td>
</tr>
<tr>
<td>PEI_CPU_INIT</td>
<td>0x32</td>
</tr>
<tr>
<td>PEI_CPU_CACHE_INIT</td>
<td>0x33</td>
</tr>
<tr>
<td>PEI_CPU_AP_INIT</td>
<td>0x34</td>
</tr>
<tr>
<td>PEI_CPU_BSP_SELECT</td>
<td>0x35</td>
</tr>
<tr>
<td>PEI_CPU_SMM_INIT</td>
<td>0x36</td>
</tr>
<tr>
<td>PEI_MEM_NB_INIT</td>
<td>0x37</td>
</tr>
<tr>
<td>PEI_MEM_SB_INIT</td>
<td>0x3B</td>
</tr>
<tr>
<td>PEI_DXE_IPL_STARTED</td>
<td>0x4F</td>
</tr>
<tr>
<td>DXE_CORE_STARTED</td>
<td>0x60</td>
</tr>
</tbody>
</table>

Recovery

<table>
<thead>
<tr>
<th>PEI_Recovery_Name</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEI_RECOVERY_AUTO</td>
<td>0xF0</td>
</tr>
<tr>
<td>PEI_RECOVERY_USER</td>
<td>0xF1</td>
</tr>
<tr>
<td>PEI_RECOVERY_STARTED</td>
<td>0xF2</td>
</tr>
<tr>
<td>PEI_RECOVERY_CAPSULE_FOUND</td>
<td>0xF3</td>
</tr>
<tr>
<td>PEI_RECOVERY_CAPSULE_LOADED</td>
<td>0xF4</td>
</tr>
</tbody>
</table>

S3

<table>
<thead>
<tr>
<th>PEI_S3_Name</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEI_S3_STARTED</td>
<td>0xE0</td>
</tr>
<tr>
<td>PEI_S3_BOOT_SCRIPT</td>
<td>0xE1</td>
</tr>
<tr>
<td>PEI_S3_VIDEO_REPOST</td>
<td>0xE2</td>
</tr>
<tr>
<td>PEI_S3_OS_WAKE</td>
<td>0xE3</td>
</tr>
</tbody>
</table>

5-8-2 AMI Standard - DXE

<table>
<thead>
<tr>
<th>DXE_Name</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXE_CPU_INIT</td>
<td>0x63</td>
</tr>
<tr>
<td>DXE_NB_HB_INIT</td>
<td>0x68</td>
</tr>
<tr>
<td>DXE_NB_INIT</td>
<td>0x69</td>
</tr>
<tr>
<td>DXE_NB_SMM_INIT</td>
<td>0x6A</td>
</tr>
<tr>
<td>DXE_SB_INIT</td>
<td>0x70</td>
</tr>
<tr>
<td>DXE_SB_SMM_INIT</td>
<td>0x71</td>
</tr>
<tr>
<td>DXE_SB_DEVICES_INIT</td>
<td>0x72</td>
</tr>
<tr>
<td>Event Name</td>
<td>Code</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>DXE_ACPI_INIT</td>
<td>0x78</td>
</tr>
<tr>
<td>DXE_CSM_INIT</td>
<td>0x79</td>
</tr>
<tr>
<td>DXE_BDS_STARTED</td>
<td>0x90</td>
</tr>
<tr>
<td>DXE_BDS_CONNECT_DRIVERS</td>
<td>0x91</td>
</tr>
<tr>
<td>DXE_PCI_BUS_BEGIN</td>
<td>0x92</td>
</tr>
<tr>
<td>DXE_PCI_BUS_HPC_INIT</td>
<td>0x93</td>
</tr>
<tr>
<td>DXE_PCI_BUS_ENUM</td>
<td>0x94</td>
</tr>
<tr>
<td>DXE_PCI_BUS_REQUEST_RESOURCES</td>
<td>0x95</td>
</tr>
<tr>
<td>DXE_PCI_BUS_ASSIGN_RESOURCES</td>
<td>0x96</td>
</tr>
<tr>
<td>DXE_CON_OUT_CONNECT</td>
<td>0x97</td>
</tr>
<tr>
<td>DXE_CON_IN_CONNECT</td>
<td>0x98</td>
</tr>
<tr>
<td>DXE_SIO_INIT</td>
<td>0x99</td>
</tr>
<tr>
<td>DXE_USB_BEGIN</td>
<td>0x9A</td>
</tr>
<tr>
<td>DXE_USB_RESET</td>
<td>0x9B</td>
</tr>
<tr>
<td>DXE_USB_DETECT</td>
<td>0x9C</td>
</tr>
<tr>
<td>DXE_USB_ENABLE</td>
<td>0x9D</td>
</tr>
<tr>
<td>DXE_IDE_BEGIN</td>
<td>0xA0</td>
</tr>
<tr>
<td>DXE_IDE_RESET</td>
<td>0xA1</td>
</tr>
<tr>
<td>DXE_IDE_DETECT</td>
<td>0xA2</td>
</tr>
<tr>
<td>DXE_IDE_ENABLE</td>
<td>0xA3</td>
</tr>
<tr>
<td>DXE_SCSI_BEGIN</td>
<td>0xA4</td>
</tr>
<tr>
<td>DXE_SCSI_RESET</td>
<td>0xA5</td>
</tr>
<tr>
<td>DXE_SCSI_DETECT</td>
<td>0xA6</td>
</tr>
<tr>
<td>DXE_SCSI_ENABLE</td>
<td>0xA7</td>
</tr>
<tr>
<td>DXE_SETUP_VERIFYING_PASSWORD</td>
<td>0xA8</td>
</tr>
<tr>
<td>DXE_SETUP_START</td>
<td>0xA9</td>
</tr>
<tr>
<td>DXE_SETUP_INPUT_WAIT</td>
<td>0xBA</td>
</tr>
<tr>
<td>DXE_READY_TO_BOOT</td>
<td>0xAD</td>
</tr>
<tr>
<td>DXE_LEGACY_BOOT</td>
<td>0xAE</td>
</tr>
<tr>
<td>DXE_EXIT_BOOT_SERVICES</td>
<td>0xAF</td>
</tr>
<tr>
<td>RT_SET_VIRTUAL_ADDRESS_MAP_BEGIN</td>
<td>0xB0</td>
</tr>
<tr>
<td>RT_SET_VIRTUAL_ADDRESS_MAP_END</td>
<td>0xB1</td>
</tr>
<tr>
<td>DXE_LEGACY_OPRM_INIT</td>
<td>0xB2</td>
</tr>
<tr>
<td>DXE_RESET_SYSTEM</td>
<td>0xB3</td>
</tr>
<tr>
<td>DXE_USB_HOTPLUG</td>
<td>0xB4</td>
</tr>
<tr>
<td>DXE_PCI_BUS_HOTPLUG</td>
<td>0xB5</td>
</tr>
<tr>
<td>DXE_NVRAM_CLEANUP</td>
<td>0xB6</td>
</tr>
<tr>
<td>DXE_CONFIGURATION_RESET</td>
<td>0xB7</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PEI_MEMORY_INVALID_TYPE</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_INVALID_SPEED</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_SPD_FAIL</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_INVALID_SIZE</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_MISMATCH</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_NOT_DETECTED</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_NONE_USEFUL</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_ERROR</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_NOT_INSTALLED</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_INVALID_TYPE</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_INVALID_SPEED</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_MISMATCH</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_SELF_TEST_FAILED</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_CACHE_ERROR</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_MICROCODE_UPDATE_FAILED</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_NO_MICROCODE</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_INTERNAL_ERROR</td>
<td></td>
</tr>
<tr>
<td>PEI_CPU_ERROR</td>
<td></td>
</tr>
<tr>
<td>PEI_RESET_NOT_AVAILABLE</td>
<td></td>
</tr>
<tr>
<td>PEI_RECOVERY_PPI_NOT_FOUND</td>
<td></td>
</tr>
<tr>
<td>PEI_RECOVERY_NO_CAPSULE</td>
<td></td>
</tr>
<tr>
<td>PEI_RECOVERY_INVALID_CAPSULE</td>
<td></td>
</tr>
<tr>
<td>PEI_MEMORY_S3_RESUME_FAILED</td>
<td></td>
</tr>
<tr>
<td>PEI_S3_RESUME_PPI_NOT_FOUND</td>
<td></td>
</tr>
<tr>
<td>PEI_S3_BOOT_SCRIPT_ERROR</td>
<td></td>
</tr>
<tr>
<td>PEI_S3_OS_WAKE_ERROR</td>
<td></td>
</tr>
<tr>
<td>DXE_CPU_ERROR</td>
<td></td>
</tr>
<tr>
<td>DXE_NB_ERROR</td>
<td></td>
</tr>
<tr>
<td>DXE_SB_ERROR</td>
<td></td>
</tr>
<tr>
<td>DXE_ARCH_PROTOCOL_NOT_AVAILABLE</td>
<td></td>
</tr>
<tr>
<td>DXE_PCI_BUS_OUT_OF_RESOURCES</td>
<td></td>
</tr>
<tr>
<td>DXE_LEGACY_OPROM_NO_SPACE</td>
<td></td>
</tr>
<tr>
<td>DXE_NO_CON_OUT</td>
<td></td>
</tr>
<tr>
<td>DXE_NO_CON_IN</td>
<td></td>
</tr>
<tr>
<td>DXE_INVALID_PASSWORD</td>
<td></td>
</tr>
<tr>
<td>DXE_BOOT_OPTION_LOAD_ERROR</td>
<td></td>
</tr>
<tr>
<td>DXE_BOOT_OPTION_FAILED</td>
<td></td>
</tr>
<tr>
<td>DXE_FLASH_UPDATE_FAILED</td>
<td></td>
</tr>
<tr>
<td>DXE_RESET_NOT_AVAILABLE</td>
<td></td>
</tr>
</tbody>
</table>
5-8-4 Intel UPI POST Codes

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize KTIRC input structure default values</td>
<td>0xA0</td>
</tr>
<tr>
<td>Collect info such as SBSP, Boot Mode, Reset type etc</td>
<td>0xA1</td>
</tr>
<tr>
<td>Setup IO SADs in SBSP to access the config space</td>
<td>0xA2</td>
</tr>
<tr>
<td>Setup up minimum path between SBSP & other sockets</td>
<td>0xA3</td>
</tr>
<tr>
<td>Add the node to the tree</td>
<td></td>
</tr>
<tr>
<td>Parse the LEP of the discovered socket</td>
<td></td>
</tr>
<tr>
<td>Check if the system has the supported topology</td>
<td></td>
</tr>
<tr>
<td>Setup the boot path for the parent which is not directly connected to Legacy CPU</td>
<td></td>
</tr>
<tr>
<td>Setup path from SBSP to the new found node</td>
<td></td>
</tr>
<tr>
<td>Setup IO SADs in PBSP to access the config space</td>
<td>0xA4</td>
</tr>
<tr>
<td>System configurations that require some kind of reset</td>
<td>0xA5</td>
</tr>
<tr>
<td>Sync up with PBSPs</td>
<td>0xA6</td>
</tr>
<tr>
<td>Topology discovery and route calculation</td>
<td>0xA7</td>
</tr>
<tr>
<td>Program final route</td>
<td>0xA8</td>
</tr>
<tr>
<td>Program final IO SAD setting</td>
<td>0xA9</td>
</tr>
<tr>
<td>Protocol layer and other Uncore settings</td>
<td>0xAA</td>
</tr>
<tr>
<td>Transition links to full speed operation</td>
<td>0xAB</td>
</tr>
<tr>
<td>Phy layer settings</td>
<td>0xAC</td>
</tr>
<tr>
<td>Link layer settings</td>
<td>0xAD</td>
</tr>
<tr>
<td>Coherency Settings</td>
<td>0xAE</td>
</tr>
<tr>
<td>KTIRC is done</td>
<td>0xAF</td>
</tr>
</tbody>
</table>

5-8-5 Intel UPI Error Codes

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>When system BSP tries to setup path for remote sockets or sends a Boot_Go command to remote socket in SetupSbspPathToAllSockets() or SyncUpPbspForReset(). If the remote socket(s) hasn't checked-in, assert; it is a fatal condition, this error will be logged. No retry. RC Behavior: System Halt</td>
<td>0xD8</td>
</tr>
<tr>
<td>When SBSP tries to add this remote socket into system topology tree in SetupSbspPathToAllSockets(), there are some errors occur in the data structure. No retry. RC Behavior: The current Socket is not added to the tree.</td>
<td>0xDA</td>
</tr>
<tr>
<td>When SBSP setups the boot path for the parent which is not directly connected to Legacy CPU in SetupSbspPathToAllSockets(). The Child is not an immediate neighbor of Parent. No retry.</td>
<td></td>
</tr>
</tbody>
</table>
SAD setup error
RC Behavior: System Halt 0xDB

Unsupported topology
RC Behavior: System Halt 0xDC

SBSP cannot find KPIRC TXEQ Parameters for this link in GetSocketLinkEparams(). No retry.
RC Behavior: System Halt 0xDD

5-8-6 Intel MRC POST Codes

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect DIMM population</td>
<td>0xB0</td>
</tr>
<tr>
<td>Set DDR frequency</td>
<td>0xB1</td>
</tr>
<tr>
<td>Gather remaining SPD data</td>
<td>0xB2</td>
</tr>
<tr>
<td>Program registers on the memory controller level</td>
<td>0xB3</td>
</tr>
<tr>
<td>Evaluate RAS modes and save rank information</td>
<td>0xB4</td>
</tr>
<tr>
<td>Program registers on the channel level</td>
<td>0xB5</td>
</tr>
<tr>
<td>DDRIO Initialization</td>
<td>0xB6</td>
</tr>
<tr>
<td>Train DDR</td>
<td>0xB7</td>
</tr>
<tr>
<td>Initialize CLTT/OLTT</td>
<td>0xB8</td>
</tr>
<tr>
<td>Hardware memory test and init</td>
<td>0xB9</td>
</tr>
<tr>
<td>Execute memory init</td>
<td>0xBA</td>
</tr>
<tr>
<td>Program memory map and interleaving</td>
<td>0xBB</td>
</tr>
<tr>
<td>Program RAS configuration</td>
<td>0xBC</td>
</tr>
<tr>
<td>Rank margin tool</td>
<td>0xBD</td>
</tr>
<tr>
<td>MRC is done</td>
<td>0xBF</td>
</tr>
</tbody>
</table>

5-8-7 Intel MRC Error Codes

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No memory was detected</td>
<td>0xE8</td>
</tr>
<tr>
<td>Memory test failure</td>
<td>0xEB</td>
</tr>
<tr>
<td>Different dimm types are detected installed in the system</td>
<td>0xED</td>
</tr>
<tr>
<td>Number of HAs found in system greater than MAX_HA defined in MRC build</td>
<td>0xEE</td>
</tr>
<tr>
<td>Indicates a CLTT table structure error</td>
<td>0xEF</td>
</tr>
<tr>
<td>Invalid VR mode, unable to set DRAM VDD</td>
<td>0xF0</td>
</tr>
<tr>
<td>Failure occurred reserving memory for IOT</td>
<td>0xF1</td>
</tr>
<tr>
<td>Reference code assert</td>
<td>0xF2</td>
</tr>
<tr>
<td>Unsupported MC frequency set</td>
<td>0xF3</td>
</tr>
<tr>
<td>Unable to get current MC frequency</td>
<td>0xF4</td>
</tr>
</tbody>
</table>
5-8-8 Intel PM POST Codes

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of PPM structure initialization</td>
<td>0xD0</td>
</tr>
<tr>
<td>PPM CSR programming</td>
<td>0xD1</td>
</tr>
<tr>
<td>PPM MSR programming</td>
<td>0xD2</td>
</tr>
<tr>
<td>Start of PState transition init</td>
<td>0xD3</td>
</tr>
<tr>
<td>PPM exit</td>
<td>0xD4</td>
</tr>
<tr>
<td>PPM On ready to boot event</td>
<td>0xD5</td>
</tr>
</tbody>
</table>

5-8-9 Intel PM POST Codes

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of IIO early Initialization</td>
<td>0xE0</td>
</tr>
<tr>
<td>Pre Link training</td>
<td>0xE1</td>
</tr>
<tr>
<td>Start of Gen3 EQ training</td>
<td>0xE2</td>
</tr>
<tr>
<td>Start of PState transition init</td>
<td>0xE3</td>
</tr>
<tr>
<td>Gen3 parameters override</td>
<td>0xE4</td>
</tr>
<tr>
<td>End of IIO Early Initialization</td>
<td>0xE5</td>
</tr>
<tr>
<td>Start of IIO Late initialization</td>
<td>0xE6</td>
</tr>
<tr>
<td>PCIE port initialization</td>
<td>0xE7</td>
</tr>
<tr>
<td>IOAPIC initialization</td>
<td>0xE8</td>
</tr>
<tr>
<td>VTD initialization</td>
<td>0xE9</td>
</tr>
<tr>
<td>IOAT initialization</td>
<td>0xEA</td>
</tr>
<tr>
<td>DFX initialization</td>
<td>0xEB</td>
</tr>
<tr>
<td>NTB initialization</td>
<td>0xEC</td>
</tr>
<tr>
<td>Security Initialization</td>
<td>0xED</td>
</tr>
<tr>
<td>IIO late initialization</td>
<td>0xEE</td>
</tr>
<tr>
<td>IIO On ready to boot event</td>
<td>0xEF</td>
</tr>
</tbody>
</table>
5-9 BIOS POST Beep code (AMI standard)

5-9-1 PEI Beep Codes

<table>
<thead>
<tr>
<th># of Beeps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memory not installed.</td>
</tr>
<tr>
<td>1</td>
<td>Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)</td>
</tr>
<tr>
<td>2</td>
<td>Recovery started</td>
</tr>
<tr>
<td>3</td>
<td>DXE IPL was not found</td>
</tr>
<tr>
<td>3</td>
<td>DXE Core Firmware Volume was not found</td>
</tr>
<tr>
<td>4</td>
<td>Recovery failed</td>
</tr>
<tr>
<td>4</td>
<td>S3 Resume failed</td>
</tr>
<tr>
<td>7</td>
<td>Reset PPI is not available</td>
</tr>
</tbody>
</table>

5-9-2 DXE Beep Codes

<table>
<thead>
<tr>
<th># of Beeps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Invalid password</td>
</tr>
<tr>
<td>4</td>
<td>Some of the Architectural Protocols are not available</td>
</tr>
<tr>
<td>5</td>
<td>No Console Output Devices are found</td>
</tr>
<tr>
<td>5</td>
<td>No Console Input Devices are found</td>
</tr>
<tr>
<td>6</td>
<td>Flash update is failed</td>
</tr>
<tr>
<td>7</td>
<td>Reset protocol is not available</td>
</tr>
<tr>
<td>8</td>
<td>Platform PCI resource requirements cannot be met</td>
</tr>
</tbody>
</table>
5-10 BIOS Recovery Instruction

The system has an embedded recovery technique. In the event that the BIOS becomes corrupt the boot block can be used to restore the BIOS to a working state. To restore your BIOS, please follow the instructions listed below:

Recovery Instruction:

1. Change xxx.ROM to amiboot.rom.
2. Copy amiboot.rom and AFUDOS.exe to USB diskette.
3. Setting BIOS Recovery jump to enabled status.
4. Boot into BIOS recovery.
5. Run Proceed with flash update.
6. BIOS update.