Data centers must be reimagined if they are to sustain the compute performance required to continue quantum leaps in discoveries and provide timely insights. To keep pace, GIGABYTE has researched and developed a new approach that goes beyond air cooled infrastructure, and into a method that dissipates heat better, Single-phase Immersion Cooling. This has proven to be more energy efficient and scalable for deployments across the globe, while being environmentally friendly and safe. For this new approach, GIGABYTE has created a one stop solution.
GIGABYTE Single-phase Immersion Cooling Solution

Dandy Yeh, Founder and Chairperson of GIGABYTE, stated, “GIGABYTE has always been focused on improving server performance. Today, in the face of cooling issues for CPUs and GPUs with higher and higher computing performance, we are not only working with industry-leading partners to help companies care for their operations and sustainable development, we have also developed single-phase immersion cooling products, allowing users to deploy green computing quickly.”

The effects of the pandemic have brought many changes to traditional business models. Large-scale remote work and a shift to online activities is widespread. Coupled with mainstream e-commerce and financial technologies, the need for big data and cloud computing has greatly increased, leading to “resilience challenges” for data centers of large companies. At the same time, Taiwan aims to realize the goal of net-zero emissions by 2050. Therefore, while attempting to reduce the power consumption of data centers, improving energy efficiency has become an urgent matter for all IT infrastructures. To remedy this, GIGABYTE has launched a one-stop solution for single-phase immersion cooling by leveraging expertise in high-performance computing and cooling designs.

“Net-zero emissions cannot be delayed. Our single-phase immersion cooling products are not only compact in size and comprehensive, allowing for fast deployment, but also able to reduce the total cost of ownership (TCO) for our customers. We are able to overcome the traditional high costs associated with new data centers and become an accelerator for corporate net-zero emissions,” said Dandy Yeh.

In 2022, GIGABYTE dipped its toes into immersion cooling, and has since gone all in. For its efforts, GIGABYTE has received the recognition of academia, scientific research institutes, government agencies, and corporate customers, including the adoption of GIGABYTE’s immersion computing products by internationally renowned foundries and telecommunication giants.

GIGABYTE possesses a complete server product line and a wealth of manufacturing experience, and it has directly translated into the success of new immersion cooling solutions as customers’ demand for green computing continues to grow.
Charting a New Path with Advanced Cooling

Reliability, availability, and serviceability are all traits found in the best data centers of today and tomorrow. As IT hardware and technology continue to improve, they are also making it tough for current data centers to be sustainable with the traditional fans, HVAC, and hot/cold aisles.

Why? A major reason - increase in rack power density. For each new generation of chips, the die size is shrunk while the number of transistors has increased, and this translates to higher performance, but also more heat. For instance, a GPU dense server can support CPUs and GPUs up to 300W TDP each component, but new generations of hardware are increasing the TDP by 25% or more, which is unsustainable in the same footprint. Consequently, servers are reaching thermal limitations. To maintain the same hardware density, a more efficient cooling approach is needed.

Data center architects realize this and quantify this efficiency using power usage effectiveness (PUE). PUE is a ratio that compares how much power enters the data center to the power delivered to IT equipment. Ideally, the PUE value would be 1.0; however, traditional air-cooled data centers achieve a PUE of ~1.65, which isn’t horrible, but it shows room for improvement. Single-phase immersion cooling can achieve a PUE in the ballpark of 1.02-1.03.

How it Works

Single-phase immersion cooling redefines the data center from how IT equipment is cooled to the reduction in the amount and complexity of the data center infrastructure. By submerging IT equipment into a dielectric liquid bath, heat is removed faster than air while no damage or degrading occurs to all components. The liquid coolant with a higher specific heat capacity than air can quickly remove the heat. The heat given off by CPUs, GPUs, and other components is transferred directly to the liquid or via a heatsink. The warm liquid is then pumped out by a coolant distribution unit (CDU) or dry cooler. In the CDU cases, a second transfer occurs as the heat is then transferred to facility water. The resulting cooled coolant is pumped back into the immersion tank while the warmed water continues on to a heat exchanger to be expelled. And the cycle continues. Also, as the name implies, the fluid in the immersion tank does not change state, so there is no evaporation or condensation occurring, which ensures operator safety and allows for easy servicing of the tank and IT equipment.

The GIGABYTE One Stop Immersion Solution

"Immersion Tank + Immersion Ready Server + Coolant + Service"

GIGABYTE aims to give customers a hub to design and acquire all the necessary technology to deploy a single-phase immersion cooling data center. As a leader in enterprise technology, GIGABYTE has the ability to leverage current server designs to accommodate new specialized servers for immersion cooling deployments in tanks provided by GIGABYTE or its other global immersion partners. The first wave of immersion ready servers came as a result of customers’ requests so it’s best to contact a GIGABYTE sales representative to start the path to joining the immersion era.
Immersion Cooling Server

G293-Z42-IAP1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual AMD EPYC 9004 Series
- **Memory:** 24 x DDR5 RDIMM slots
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” Gen5 NVMe/SATA/SAS
 - 4 x 2.5” SATA/SAS
- **Expansion Slots:** 8 x Dual slot Gen5 GPUs
- **Power Supply:** [IAP1] Dual 3200W Platinum

G293-S45-IAP1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual 5th/4th Gen Intel® Xeon® Scalable Dual Intel® Xeon® CPU Max Series
- **Memory:** 16 x DDR5 RDIMM slots
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 8 x 2.5” SATA/SAS
 - *NVMe support requires additional NVMe cables*
- **Expansion Slots:** 8 x Dual slot Gen5 GPUs
- **Power Supply:** [IAP1] Dual 3000W Titanium

G292-280-IAY1/IAP1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual 3rd Gen Intel® Xeon® Scalable
- **Memory:** 24 x DDR4 RDIMM/LRDIMM
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” Gen4 NVMe/SATA/SAS
 - 4 x 2.5” SATA/SAS
- **Expansion Slots:** 8 x Dual slot Gen4 GPUs
- **Power Supply:** Dual 3000W Titanium

G292-Z45-ICU1/ICM1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual AMD EPYC™ 7003/7002 Series
- **Memory:** 16 x DDR4 RDIMM/LRDIMM
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” SATA/SAS
 - 4 x 2.5” Gen4 NVMe/SATA/SAS
- **Expansion Slots:** 8 x Dual slot Gen4 GPUs
- **Power Supply:** [ICU1] Dual 2200W Platinum

G292-Z45-ICU1/ICM1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual AMD EPYC™ 7003/7002 Series
- **Memory:** 16 x DDR4 RDIMM/LRDIMM
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” Gen4 NVMe/SATA/SAS
 - 4 x 2.5” SATA/SAS
- **Expansion Slots:** 8 x Dual slot Gen4 GPUs
- **Power Supply:** [ICU1] Dual 2200W Platinum

G152-Z12-200/400
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 1U
- **Processor:** Single AMD EPYC™ 7003/7002 Series
- **Memory:** 8 x DDR4 RDIMM/LRDIMM
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” Gen4 NVMe (internal)
- **Expansion Slots:** 16 x Single slot Gen4 GPUs
- **Power Supply:** [ICU1] Dual 2000W Platinum

G293-S45-IAP1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual Intel® Xeon® CPU Max Series
- **Memory:** 16 x DDR5 RDIMM slots
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” SATA/SAS
 - *NVMe support requires additional NVMe cables*
- **Expansion Slots:** 8 x Dual slot Gen5 GPUs
- **Power Supply:** [IAP1] Dual 3000W Titanium

G293-S45-IAP1
- **Workloads:** HPC, AI, ML, Data analytics
- **Form Factor:** 2U
- **Processor:** Dual Intel® Xeon® CPU Max Series
- **Memory:** 16 x DDR5 RDIMM slots
- **Networking:** 2 x 10GbE LAN, 1 x MLAN
- **Storage:**
 - 4 x 2.5” SATA/SAS
 - *NVMe support requires additional NVMe cables*
- **Expansion Slots:** 8 x Dual slot Gen5 GPUs
- **Power Supply:** [IAP1] Dual 3000W Titanium
Immersion Cooling Server

<table>
<thead>
<tr>
<th>Model</th>
<th>Form Factor</th>
<th>Workloads</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>R283-SF0-IAL1</td>
<td>2U 4-Node</td>
<td>HPC, HCl, Hybrid/private cloud</td>
<td>Dual 5th/4th Gen Intel® Xeon® Scalable per node</td>
<td>64 x DDR5 RDIMM</td>
<td>4 x MLAN, 1 x CMC</td>
<td>8 x 2.5” Gen4 NVMe/SATA/SAS Optional 4 x M.2 slots (PCIe Gen4 x4)</td>
<td>4 x LP PCIe Gen5 x16 slots, 4 x OCP 3.0 Gen5 x16 slots</td>
<td>Dual 3000W Titanium [ICU1] Dual 2200W Platinum [ICP1] Dual 3000W Titanium</td>
</tr>
<tr>
<td>R283-ZF0-IAL1</td>
<td>2U 4-Node</td>
<td>HPC, HCl, Hybrid/private cloud</td>
<td>Dual AMD EPYC™ 9004 Series per node</td>
<td>96 x DDR5 RDIMM</td>
<td>8 x 1GbE LAN, 4 x MLAN</td>
<td>8 x 2.5” Gen4 NVMe/SATA/SAS Optional 4 x M.2 slots (PCIe Gen4 x4)</td>
<td>4 x LP PCIe Gen4 x16 slots, 4 x OCP 3.0 Gen4 x16 slots</td>
<td>Dual 3000W Titanium [ICU1] Dual 2200W Platinum [ICP1] Dual 3000W Titanium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Form Factor</th>
<th>Workloads</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S251-3O0-IBC1/IBH1</td>
<td>2U</td>
<td>Storage</td>
<td>Single 2nd Gen Intel® Xeon® Scalable Single Intel® Xeon® W-3200</td>
<td>8 x DDR4 RDIMM/LRDIMM</td>
<td>2 x 1GbE LAN, 1 x MLAN</td>
<td>24 x 3.5” SATA/SAS + 2 x 2.5” SATA 1 x M.2 slot (PCIe Gen3 x4)</td>
<td>3 x LP PCIe Gen3 x16 slots, 3 x LP PCIe Gen3 x8 slots, 1 x LP PCIe Gen3 x4 slots</td>
<td>[IBC1] Dual 1300W Platinum [IBH1] Dual 1300W Titanium</td>
</tr>
<tr>
<td>R283-SF0-IAL1</td>
<td>2U</td>
<td>Storage</td>
<td>HPC, AI, ML, Data analytics</td>
<td>32 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>12 x 3.5”/2.5” Gen5 NVMe/SATA/SAS4</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>R283-ZF0-IAL1</td>
<td>2U</td>
<td>Storage</td>
<td>HPC, AI, ML, Data analytics</td>
<td>24 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>8 x 3.5”/2.5” Gen5 NVMe/SATA/SAS4</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
</tbody>
</table>
Immersion Cooling Server

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Form Factor</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>R183-SF2-IAL1</td>
<td>1U</td>
<td>Dual 5th/4th Gen Intel® Xeon® Scalable Dual Intel® Xeon® CPU Max Series</td>
<td>32 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen3 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x Internal LP PCIe Gen4 x8 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>R183-ZF2-IAL1</td>
<td>1U</td>
<td>Dual AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>24 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen5 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 2 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>TO15-Z20-IA01</td>
<td>1OU</td>
<td>Single AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>12 x DDR5 RDIMM</td>
<td>2 x 10GbE LAN, 1 x MLAN</td>
<td>4 x 15mm E1.5 NVMe, 2 x M.2 slots (PCIe Gen5 x4), Optional 2 x M.2 slots (SATA)</td>
<td>4 x Dual slot Gen5 GPUs, 2 LP PCIe Gen5 x16 slots</td>
<td>From 48V DC single busbar</td>
</tr>
</tbody>
</table>

TO15-S40-IA01

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Form Factor</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>R183-SF2-IAL1</td>
<td>1U</td>
<td>Dual 5th/4th Gen Intel® Xeon® Scalable Dual Intel® Xeon® CPU Max Series</td>
<td>32 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen3 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x Internal LP PCIe Gen4 x8 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>R183-ZF2-IAL1</td>
<td>1U</td>
<td>Dual AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>24 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen5 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 2 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>TO15-Z20-IA01</td>
<td>1OU</td>
<td>Single AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>12 x DDR5 RDIMM</td>
<td>2 x 10GbE LAN, 1 x MLAN</td>
<td>4 x 15mm E1.5 NVMe, 2 x M.2 slots (PCIe Gen5 x4), Optional 2 x M.2 slots (SATA)</td>
<td>4 x Dual slot Gen5 GPUs, 2 LP PCIe Gen5 x16 slots</td>
<td>From 48V DC single busbar</td>
</tr>
</tbody>
</table>

TO15-S41-IA01

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Form Factor</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>R183-SF2-IAL1</td>
<td>1U</td>
<td>Dual 5th/4th Gen Intel® Xeon® Scalable Dual Intel® Xeon® CPU Max Series</td>
<td>32 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen3 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x Internal LP PCIe Gen4 x8 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>R183-ZF2-IAL1</td>
<td>1U</td>
<td>Dual AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>24 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen5 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 2 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>TO15-Z20-IA01</td>
<td>1OU</td>
<td>Single AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>12 x DDR5 RDIMM</td>
<td>2 x 10GbE LAN, 1 x MLAN</td>
<td>4 x 15mm E1.5 NVMe, 2 x M.2 slots (PCIe Gen5 x4), Optional 2 x M.2 slots (SATA)</td>
<td>4 x Dual slot Gen5 GPUs, 2 LP PCIe Gen5 x16 slots</td>
<td>From 48V DC single busbar</td>
</tr>
</tbody>
</table>

TO15-Z40-IA01

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Form Factor</th>
<th>Processor</th>
<th>Memory</th>
<th>Networking</th>
<th>Storage</th>
<th>Expansion Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>R183-SF2-IAL1</td>
<td>1U</td>
<td>Dual 5th/4th Gen Intel® Xeon® Scalable Dual Intel® Xeon® CPU Max Series</td>
<td>32 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen3 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 1 x FHHL PCIe Gen5 x16 slot, 1 x Internal LP PCIe Gen4 x8 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>R183-ZF2-IAL1</td>
<td>1U</td>
<td>Dual AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>24 x DDR5 RDIMM</td>
<td>1 x MLAN</td>
<td>2 x 2.5" Gen5 NVMe/SATA/SAS-4, 2 x M.2 slots (PCIe Gen5 x4)</td>
<td>4 x Dual slot Gen5 GPUs, 2 x FHHL PCIe Gen5 x16 slot, 1 x OCP 3.0 Gen5 x16 slot</td>
<td>Dual 2700W Titanium</td>
</tr>
<tr>
<td>TO15-Z20-IA01</td>
<td>1OU</td>
<td>Single AMD EPYC™ 9004 Series (with AMD 3D V-Cache™ Technology)</td>
<td>12 x DDR5 RDIMM</td>
<td>2 x 10GbE LAN, 1 x MLAN</td>
<td>4 x 15mm E1.5 NVMe, 2 x M.2 slots (PCIe Gen5 x4), Optional 2 x M.2 slots (SATA)</td>
<td>4 x Dual slot Gen5 GPUs, 2 LP PCIe Gen5 x16 slots</td>
<td>From 48V DC single busbar</td>
</tr>
</tbody>
</table>
Immersion Cooling Tank

<table>
<thead>
<tr>
<th></th>
<th>A1P0-EB0</th>
<th>A1O3-CC0</th>
<th>A1P0-EA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Capacity</td>
<td>21U + 2U x 2 (EIA)</td>
<td>18OU + 2OU (power shelf) + 1U x 2 (EIA)</td>
<td>12U (EIA)</td>
</tr>
<tr>
<td>Cooling Power</td>
<td>80 KW</td>
<td>40 KW</td>
<td></td>
</tr>
<tr>
<td>Unit Size</td>
<td>Tank: W1.16 x D0.91 x H1.49 m CDU: W0.48 x D0.86 x H1.62 m</td>
<td>Tank: W0.87 x D1.2 x H1.56 m</td>
<td></td>
</tr>
<tr>
<td>Unit Weight</td>
<td>Tank: 450 kg (w/o coolant), CDU: 325 kg</td>
<td>300 kg (w/o coolant)</td>
<td></td>
</tr>
<tr>
<td>Coolant Volume</td>
<td>750 Liter (615 kg)</td>
<td>400 Liter (320 kg)</td>
<td></td>
</tr>
<tr>
<td>Input Power Spec</td>
<td>3P+N+E 63A, 380-415VAC, 50/60Hz x2 1P+N+E 15A, 220-240VAC, 50/60Hz x1</td>
<td>3P+N+E 32A, 380-415VAC, 50/60Hz x1 3P+N+E 63A, 380-415VAC, 50/60Hz x1 1P+N+E 15A, 220-240VAC, 50/60Hz x1</td>
<td>3P+N+E 32A, 380-415VAC, 50/60Hz x2</td>
</tr>
<tr>
<td>Depth Supported</td>
<td>900 mm</td>
<td>900 mm</td>
<td></td>
</tr>
<tr>
<td>Cooling Pipe Size</td>
<td>2” clamp fitting (Tube OD 50.8 mm / Flange OD 63.9 mm)</td>
<td>PT 1-1/4” Male Adaptor (Pipe OD 42.7 mm)</td>
<td></td>
</tr>
<tr>
<td>Cooling Water Inlet</td>
<td>20-35°C</td>
<td>20-35°C</td>
<td></td>
</tr>
<tr>
<td>Cooling Water Flow</td>
<td>240 LPM</td>
<td>100 LPM</td>
<td></td>
</tr>
</tbody>
</table>
Immersion Cooling POC Tank

<table>
<thead>
<tr>
<th>4U POC Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Capacity</td>
</tr>
<tr>
<td>Cooling Power</td>
</tr>
<tr>
<td>Unit Size</td>
</tr>
<tr>
<td>Unit Weight</td>
</tr>
<tr>
<td>Coolant Tank Volume</td>
</tr>
<tr>
<td>Power Plug</td>
</tr>
<tr>
<td>Input Power Spec</td>
</tr>
<tr>
<td>Depth Supported</td>
</tr>
<tr>
<td>Cooling Type</td>
</tr>
</tbody>
</table>

Accessories and Coolants

IT Lift
- Dimension: W1.15 x D0.85 x H1.53 m
- Unit weight: 200 kg
- Lifting load: 70 kg
- Input AC: 100-240V~/ 3.5A, 50/60Hz
- Power Plug: US ,10A, 125V

IT Dry Rack
- Dimension: W 1.23 x D 0.63 x H 1.25 m
- Unit weight: 75 kg
- Server depth supported: 900 mm
- Support space: 20 U or 20 OU
- Load capacity: 800 kg

Coolants
- Shell: Immersion Cooling Fluid S3 X, Immersion Cooling Fluid S5 X
- Exxon Mobil: SpectraSyn™ 6
- Chevron: SynFluid® PAO 4 cST