
Getting Started Guide
Intel® QuickAssist Technology
Hardware Version 2.0

November 2022

Document Number: 632506

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer
or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2022, Intel Corporation. All rights reserved.

i

ii

CONTENTS

1 Getting Started Guide 1
1.1 Introduction . 1

1.1.1 About This Document . 1
1.1.2 Conventions and Terminology . 1
1.1.3 Features Implemented . 2
1.1.4 List of Files in Release . 2
1.1.5 Package Release Structure . 2

1.2 System Configuration . 3
1.2.1 Configuring BIOS . 3
1.2.2 Disabling QAT Endpoints . 3
1.2.3 Configuring Operating System . 4

1.2.3.1 Updating dnf Configuration Files . 4
1.2.3.2 Updating apt Configuration Files . 4
1.2.3.3 Installing Package Dependencies . 5
1.2.3.4 System Security Considerations . 6

1.3 Software Installation . 6
1.3.1 Installation Overview . 7
1.3.2 Unpacking the Software . 7
1.3.3 Configure Acceleration Software . 8

1.3.3.1 Configuration Options . 9
1.3.4 Install Acceleration Software . 10
1.3.5 Uninstall Acceleration Software . 11
1.3.6 Starting/Stopping the Acceleration Software . 11
1.3.7 Configuration Files . 12
1.3.8 Running Applications as Non-Root User . 12

1.4 Sample Applications . 14
1.4.1 Performance Sample Code . 14

1.4.1.1 Compiling the Performance Sample Code . 14
1.4.1.2 Default Configuration Files . 14
1.4.1.3 Loading the Sample Code Application . 15
1.4.1.4 Sample Code Parameters . 16
1.4.1.5 Test Results . 17

1.4.2 Functional Sample Applications . 17
1.4.2.1 Compiling the Acceleration Functional Sample Code 17
1.4.2.2 Executing the Acceleration Functional Sample Code in User Space 18

iii

iv

CHAPTER

ONE

GETTING STARTED GUIDE

1.1 Introduction

1.1.1 About This Document

This getting started guide documents the instructions to obtain, build, install, and exercise the Intel® QuickAssist
Technology (Intel® QAT) software for the Hardware Version 2.0 package.

In this document, for convenience:

• Software package is used as a generic term for the Intel® QAT Software Package for Hardware Version 2.0.

• Acceleration driver is used as a generic term for the software that allows the Intel® QAT Software Library APIs
to access the Intel® QAT Endpoint(s).

Note: Please refer to the Release Notes for a list of supported platforms.

1.1.2 Conventions and Terminology

The following conventions are used in this manual:

• Code text - code examples, command line entries, Application Porgramming Interface (API) names, parame-
ters, filenames, directory paths, and executables.

• Bold text - graphical user interface entries, buttons, and actions in instructions.

• Italic text - key terms and publication titles.

The following terms and acronyms are used in this manual.

1

Intel® QuickAssist Technology

Table 1: Terminology
Term Description
API Application Programming Interface
asym Asymmetric Cryptography
BDF Bus Device Function
BOM Bill of Materials
CBC Cipher Block Chaining
cy Cryptography
dc Data Compression
GRUB Grand Unified Bootloader
OS Operating System
PCI Peripheral Component Interconnect
PF PCIe Physical Function
Intel® QAT Intel® QuickAssist Technology
SKU Stock Keeping Unit
sIOV Scalable IOV
SR-IOV Single Root-I/O Virtualization
VF Virtual Function

1.1.3 Features Implemented

Implemented features are listed in Release Notes.

1.1.4 List of Files in Release

A Bill of Materials (BOM) is included as a text file in the software package(s). This file is called filelist.

1.1.5 Package Release Structure

After unpacking the tar file, the directory should contain the following:

Table 2: Package Release Structure
Files/Directory Comments
IntelQAT20<version>.tar.gz Top-level Intel® QAT package
./filelist List of files in this package
./config_guess Build and installer files
./config.h.in
./config.sh
./config.sub
./configure
./install-sh
./Makefile.in
./missing
./LICENSE.GPL License file
./versionfile Version file
./quickassist Top-Level acceleration softare directory
./README README file with instructions on how to compile the driver

2 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

1.2 System Configuration

This section describes the process of configuring the system prior to the Intel® QuickAssist Technology (Intel® QAT)
driver installation.

1.2.1 Configuring BIOS

Note: If installing the Intel QAT 2.0 driver for use in a virtual environment please refer to the Virtualization Deploy-
ment Guide for additional details.

If BIOS updates are required, the following command can be used to reboot the system and enter the BIOS setup:

systemctl reboot --firmware-setup

1.2.2 Disabling QAT Endpoints

Depending on the hardware SKU, there can be up to 4 QAT endpoints per socket. It is possible to disable individual
QAT endpoints by following the instructions below:

1. Enter BIOS setup.

2. Navigate to the following path where <n> corresponds to the socket containing the QAT endpoint(s) to
be disabled: EDKII Menu > Socket Configuration > IIO Configuration > IOAT Configuration
> Sck<n> > IOAT Configuration

3. Update the CPM value to Disable for each QAT endpoint to be disabled for each socket.

4. Save changes.

5. Reboot the system.

1.2. System Configuration 3

Intel® QuickAssist Technology

1.2.3 Configuring Operating System

There are a few configuration items that may need to be completed, such as updating dnf or apt configuration files as
well as the system security configuration. This section describes these items.

1.2.3.1 Updating dnf Configuration Files

Important: This section is optional for RPM-based Linux distributions such as RHEL*, CentOS*, and Fedora*.

dnf is an application that can be used to perform operating system updates. To use dnf in a corporate network, the
following change may be required:

1. Add a line similar to the following in the /etc/dnf/dnf.conf file. The line can be added to the end of the file.

proxy=http://<proxy_server:portnum>

Note: <proxy_server:portnum> is replaced with your server information. Contact your network
administrator for details on the proxy server.

2. If your corporate proxy server requires a username and password, specify these by adding the following two
settings in the dnf.conf file.

proxy_username=YOUR-PROXY-USERNAME-HERE
proxy_password=YOUR-SUPER-SECRET-PASSWORD-HERE

1.2.3.2 Updating apt Configuration Files

Important: This section is optional for DEB-based Linux distributions such as Ubuntu*.

apt is the default package manager for Debian* based distributions such as Ubuntu*. To use apt in a corporate network,
the following updates may be required:

1. Create (or edit if the file already exists) a file named as apt.conf in the /etc/apt directory.

sudo nano /etc/apt/apt.conf

2. Add the following lines to the apt.conf file:

Acquire::http::Proxy "http://[YOUR-PROXY-USERNAME-HERE]:[YOUR-SUPER-SECRET-
→˓PASSWORD-HERE]@ [proxy-web-or-IP-address]:[port-number]";
Acquire::https::Proxy "http://[YOUR-PROXY-USERNAME-HERE]:[YOUR-SUPER-SECRET-
→˓PASSWORD-HERE]@ [proxy-web-or-IP-address]:[port-number]";

Note: YOUR-PROXY-USERNAME-HERE and YOUR-SUPER-SECRET-PASSWORD-HERE are optional pa-
rameters.

3. Save the file and exit.

4 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

4. Reboot the system. The configuration wil be applied after a reboot.

1.2.3.3 Installing Package Dependencies

The Intel QAT package depends on a number of libraries that must be installed first on the system.

RPM-based package dependencies

Important: This section is required for RPM-based Linux distributions such as RHEL*, CentOS*, and Fedora*.

1. Install the RPM-based package dependencies:

sudo dnf groupinstall "Development Tools"
sudo dnf install -y systemd-devel
sudo dnf install -y pciutils
sudo dnf install -y libudev-devel
sudo dnf install -y readline-devel
sudo dnf install -y libxml2-devel
sudo dnf install -y boost-devel
sudo dnf install -y elfutils-libelf-devel
sudo dnf install -y python3
sudo dnf install -y libnl3-devel
sudo dnf install -y kernel-devel-$(uname -r)
sudo dnf install -y gcc
sudo dnf install -y gcc-c++
sudo dnf install -y yasm
sudo dnf install -y zlib
sudo dnf install -y openssl-devel
sudo dnf install -y zlib-devel
sudo dnf install -y make

DEB-based package dependencies

Important: This section is required for DEB-based Linux distributions such as Ubuntu*.

1. Install the DEB-based package dependencies:

sudo apt-get update
sudo apt-get install -y libsystemd-dev
sudo apt-get install -y pciutils-dev
sudo apt-get install -y libudev-dev
sudo apt-get install -y libreadline6-dev
sudo apt-get install -y pkg-config
sudo apt-get install -y libxml2-dev
sudo apt-get install -y pciutils-dev
sudo apt-get install -y libboost-all-dev
sudo apt-get install -y libelf-dev

(continues on next page)

1.2. System Configuration 5

Intel® QuickAssist Technology

(continued from previous page)

sudo apt-get install -y libnl-3-dev
sudo apt-get install -y kernel-devel-$(uname -r)
sudo apt-get install -y build-essential
sudo apt-get install -y yasm
sudo apt-get install -y zlib1g-dev
sudo apt-get install -y libssl-dev

1.2.3.4 System Security Considerations

Note:
• Specific OS/filesystem topics are outside of the scope of this document. For more information, refer to the

Programmer’s Guide.

• This section contains a high-level list of system security topics. This is not an exhaustive list.

Securing your operating system is critical. Consider the following items:

• Employ effective security policies and tools; for instance, SELinux* is configured correctly and is active.

• Run and configure the firewall(s).

• Prevent privilege escalation at boot (including recovery mode); for instance, set a grub password. Additional
details are described below.

• Remove unnecessary software packages.

• Patch software in a timely manner.

• Monitor the system and the network.

• Configure and disable remote access, as appropriate.

• Disable network boot.

• Require secure passwords.

• Encrypt files, up to full-disk encryption.

• Ensure physical security of the system and the network.

• Use mlock to prevent swapping sensitive variables from RAM to disk.

• Zero out sensitive variables in RAM.

1.3 Software Installation

This section provides details on building and installing the software.

Note: This document describes the steps required to install the out-of-tree acceleration software package. For details
on installing the upstreamed acceleration software, please refer to INSTALL and README.md at https://github.com/
intel/qatlib.

6 Chapter 1. Getting Started Guide

https://github.com/intel/qatlib/blob/main/INSTALL
https://github.com/intel/qatlib/blob/main/README.md
https://github.com/intel/qatlib
https://github.com/intel/qatlib

Intel® QuickAssist Technology

1.3.1 Installation Overview

The installation procedure handles a number of tasks that would otherwise have to be done manually, including the
following:

• Create the kernel module files and copy them the appropriate directory (e.g. /usr/lib/modules/
KERN_VERSION/kernel/drivers/crypto)

• Create the shared object (.so) files by building the source code.

• Copy the shared object (.so) files to the right directory (e.g., /lib or /lib64).

• Build adf_ctl and copy it to the right directories ($ICP_ROOT/build and /usr/sbin).

• Copy the config files to /etc.

• Copy the firmware files to /lib/firmware.

• Copy the modules to the appropriate kernel source directory for loading by qat_service.

• Start the qat_service, which inserts the appropriate modules as required and runs adf_ctl to bring up the
devices.

• Set up the qat_service to run on future boots (copy to /etc/init.d, run chkconfig to add the service).

1.3.2 Unpacking the Software

The software package comes in the form of a tarball.

Note:
• The instructions in this document assume that you have super user privileges.

• In this document, the working directory is assumed to be /QAT. This directory is the ICP_ROOT.

1. Create a working directory for the software. This directory can be user defined, but for the purposes of this
document, a recommendation is provided.

export ICP_ROOT=/QAT
mkdir -p $ICP_ROOT
cd $ICP_ROOT

2. Transfer the tarball to the system in the $ICP_ROOT directory. Unpack the tarball using the following command:

tar -zxof QAT20.L.*.tar.gz

3. Restricting access to the files is recommended.

chmod -R o-rwx *

1.3. Software Installation 7

Intel® QuickAssist Technology

1.3.3 Configure Acceleration Software

Note:
• If installing the acceleration software for use in a virtual environment please refer to the Virtual Deployment

Guide for additional details.

• The ./configure script handles many options that may be of interest. For instance, there is a wide range
of possible configurations, including build or install virtualization support (host or guest) or no virtualization
support. Some build options may need to be passed as a parameter to the ./configure script before proceeding
with the installation. A complete list of configuration options is available in Configuration Options.

1. Prepare the package installation by checking the prerequisites and configuring the build options by running a
script using the following command:

./configure

A welcome message is displayed, followed by the configured build options. Successfull configuration will look
similar to the following:

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /usr/bin/mkdir -p
checking for gawk... gawk
...
checking for kernel sources... yes
checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h
config.status: executing depfiles commands

==
Type make followed by make install to build QAT with the following options
==

USE_HARD_CODED_PRIMES [0]
ICP_ARCH_USER [x86_64]
ICP_BUILDSYSTEM_PATH [/root/QAT/quickassist/build_system]
ICP_BUILD_OUTPUT [/root/QAT/build]
ICP_ENV_DIR [/root/QAT/quickassist/build_system/build_files/env_files]
ICP_TOOLS_TARGET [accelcomp]
MAX_MR [50]
KERNEL_SOURCE_ROOT [/lib/modules/4.18.0-193.el8.x86_64/build]
ICP_DEBUG [false]
QAT_UIO [false]
ICP_PARAM_CHECK [false]
ICP_DC_DYN_NOT_SUPPORTED [false]
DISABLE_STATS [false]
DRBG_POLL_AND_WAIT [false]
ICP_LOG_SYSLOG [false]
ICP_NONBLOCKING_PARTIALS_PERFORM [false]
ICP_TRACE [false]
ICP_DC_ONLY [false]

(continues on next page)

8 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

(continued from previous page)

ICP_DC_RETURN_COUNTERS_ON_ERROR [false]
ICP_DISABLE_INLINE [false]
INLINE [false]

==

1.3.3.1 Configuration Options

A complete list of compile flags and build parameters can also be obtained by executing the following command in the
shell:

./configure --help

Note: Compiler flags to produce safer binaries are enabled by default.

Table 3: Compile Flag Options
Compile Flag Description
--disable-option-checking Ignore unrecognized –enable/–with option.
--disble-FEATURE Do not include FEATURE (same as

--enable-FEATURE=no).
--enable-FEATURE[=ARG] Include FEATURE [ARG=yes].
--enable-silent-rules Less verbose build output (undo: make V=1).
--disable-silent-rules Verbose build output (undo: make V=0).
--enable-maintainer-mode Enable make rules and dependencies not useful (and

sometimes confusing) to the casual installer.
--enable-dependency-tracking Do not reject slow dependency extractors.
--disable-dependency-tracking Speeds up one-time build.
--enable-icp-debug Enables debugging.
--enable-qat-uio Enables Userspace I/O.
--disable-param-check Disables parameters checking in the top-level APIs (use

for performance optimization).
--disable-dc-dyn Disables dynamic compression support.
--disable-stats Disables statistic collection (use for performance opti-

mization).
--enable-drbg-poll-and-wait Modifies the behavior of DRBG HT functions to use sin-

gle threaded operation.
--enable-icp-log-syslog Enables debugging messages to be outputted to the sys-

tem log instead of standard output.
--enable-icp-nonblocking-partials-perform Partial operations results are not being blocked.
--enable-icp-sriov Enables Single-root I/O Virtualization in the QAT driver

(available options: host, guest).
--enable-icp-trace Enables tracing for the Cryptography API.
--enable-icp-asym-only Enables driver to support Asymmetric Crypto services

only.
--enable-icp-sym-only Enables driver to support Symmetric Crypto services

only.
--enable-icp-dc-only Enables driver supports only compression service (can

optimize size of build objects).
continues on next page

1.3. Software Installation 9

Intel® QuickAssist Technology

Table 3 – continued from previous page
Compile Flag Description
--enable-icp-dc-sym-only Enables driver to support Data Compression and Sym-

metric Crypto services only.
--enable-icp-dc-return-counters-on-error Enables updates of consumed/produced results in case of

error during compression or decompression operations.
--disable-icp-inline When defined, function inlining for functions that can-

not be inlined by the compiler is removed to enable
compilation of the driver for kernels build without
CONFIG_ARCH_SUPPORTS_OPTIMIZED_INLINING.

--enable-inline Enables INLINE feature.
--enable-icp-hb-fail-sim Enable Heartbeat Failure Simulation.
--enable-qat-coexistence Enables legacy and upstream driver coexistence.
--enable-qat-lkcf Enables QAT registration with Linux Kernel Crypto

Framework.
--enable-qat-kpt-debug-key Enable QAT debug issue certificate.
--disable-dc-strict-mode Disables Compress and Verify (CnV) functionality. See

below for details.
--enable-dc-error-simulation Enables Data Compression Error Simulation.

Important: The Compress and Verify feature checks and ensures data integrity in the compression operation of
the Intel® QAT Data Compression API. This feature introduces an independent capability to verify the compression
transformation.

Intel recommends that customers use the Compress and Verify capabilities for Intel® QAT compression operations.

As Compress and Verify provides an integrity check of the data, Intel cannot guarantee integrity of data that bypasses
the Compress and Verify capability.

Intel does not support disabling Compress and Verify.

1.3.4 Install Acceleration Software

Note: It is recommended to uninstall previous installations of the acceleration software (if previously installed).

1. Open a terminal window and switch to superuser. Provide root password when prompted.

su
cd $ICP_ROOT

2. Enter the following commands to build and install the acceleration software and sample code using the default
options:

./configure
make -j install
make samples-install

Note: After building/installing the acceleration software, secure the build output files by either
deleting them or setting permissions according to your needs.

10 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

3. Verify the acceleration software kernel objects are loaded and ready to use with this command:

lsmod | grep qat

Depending on the specific hardware present, this command will return an output similar to the fol-
lowing:

qat_4xxx 45056 0
intel_qat 331776 2 qat_4xxx,usdm_drv
uio 20480 1 intel_qat
mdev 20480 2 intel_qat,vfio_mdev
vfio 36864 3 intel_qat,vfio_mdev,vfio_iommu_type1
irqbypass 16384 2 intel_qat,kvm

Note: Not all modules will be required depending on the specific hardware present.

1.3.5 Uninstall Acceleration Software

1. Open a terminal windows and switch to superuser. Provide root password when prompted.

su
cd $ICP_ROOT

2. Enter the following commands to uninstall the acceleration software:

make uninstall
make clean

1.3.6 Starting/Stopping the Acceleration Software

When the acceleration software is installed, a script file titled qat_service is installed in the /etc/init.d directory.
The script file can be used to start and stop the acceleration software.

To start the software, issue the following command:

service qat_service start

To stop the software, issue the following command:

service qat_service stop

To stop the software and remove the kernel driver, issue the following command:

service qat_service shutdown

When the acceleration software is installed, it is set to load automatically when the operating system loads.

1.3. Software Installation 11

Intel® QuickAssist Technology

1.3.7 Configuration Files

When the acceleration software loads, it is configured based on the settings in the platform-specific configuration files.

The configuration files are in the /etc directory. Specifically:

• The name for the first configuration file for Intel® QuickAssist Technology Hardware Version 2.0 devices is
4xxx_dev0.conf

• The name of the first configuration file for Intel® Communications Chipset 8925 to 8955 Series devices is
dh895xcc_dev0.conf.

• The first configuration file for the Intel® C62x Chipset or Intel® Xeon® Processor D Family SoC is c6xx_dev0.
conf.

• The first configuration file for Intel® Atom® C3000 Processor SoC is c3xxx_dev0.conf.

• The first configuration file for other Intel® Xeon® Processor D SoC platforms is d15xx_dev0.conf.

Note: If more than one device of a given type is present, its name includes dev1, dev2, etc.

The files are processed when the system boots. If changes are made to the configuration file, the acceleration software
must be stopped and restarted for the changes to take effect.

service qat_service restart

The software package includes multiple types of platform-specific configuration files. Depending on your installation
options and SKU, a valid configuration file is copied to the /etc directory. If your system has more than one type of
hardware device or SKU, verify that the correct configuration files were copied.

Important: The software package has been validated with the default configuration files. Changes to the configuration
files could have adverse effects.

Refer to the Programmer’s Guide for additional information on the configuration files.

1.3.8 Running Applications as Non-Root User

The installation of Intel® QAT software package configures the driver to allow applications to run as non-root user.
The users must be added to the qat group.

When the make install command is performed at the directory where the Intel® QAT package is installed, the
following udev file is created which is responsible for setting up non-root access.

KERNEL=="qat_adf_ctl" MODE="0660" GROUP="qat" RUN+="/bin/chgrp qat/usr/local/bin/adf_ctl"
KERNEL=="qat_dev_processes" MODE="0660" GROUP="qat"

KERNEL=="usdm_drv" MODE="0660" GROUP="qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/mkdir / dev/hugepages/qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/chgrp qat /dev/hugepages/qat"

(continues on next page)

12 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

(continued from previous page)

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/chmod 0770 /dev/hugepages/qat"

ACTION=="remove", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/rmdir

/dev/hugepages/qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0435"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0443"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c8"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c9"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f54"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f55"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e2"
MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e3"
MODE="0660" GROUP="qat"

The updates to the udev rules are performed during the installation of the Intel® QAT driver.

The following steps need to be manually applied:

1. Change the amount of max locked memory for the username included in the qat group (the default memory
limit is 64). This can be done by specifying the limit in: /etc/security/limits.conf.

@qat - memlock 4096

1.3. Software Installation 13

Intel® QuickAssist Technology

1.4 Sample Applications

The software package contains a performance sample as well as functional sample applications. This section describes
the steps required to build and execute these applications.

1.4.1 Performance Sample Code

The sample application is provided for the user space.

1.4.1.1 Compiling the Performance Sample Code

Note:
• These instructions assume the software package was untarred in the $ICP_ROOT directory.

• For details on running user space applications as non-root user refer to the section Running Applications as
Non-Root User.

1. Open a terminal window and switch to superuser. Provide root password when prompted.

su

2. Switch to the $ICP_ROOT directory and compile the installation samples.

cd $ICP_ROOT
make samples-install

This compiles the acceleration sample code for user space. It also compiles the memory mapping driver used with the
user space application.

1.4.1.2 Default Configuration Files

By default, the QAT configuration files enable asymmetric crypto and data compression services. If symmetric crypto
is desired, the service must be enabled in the QAT configuration file. The QAT configuration files are included in /etc
folder and are named 4xxx_dev<x>.conf where x is the device number.

In this file, replace the line:

ServicesEnabled = asym;dc

With:

ServicesEnabled = sym;dc

14 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

1.4.1.3 Loading the Sample Code Application

Note: In user space, before launching the cpa_sample_code application, the environmental variable
LD_LIBRARY_PATH may need to be set to the path where libqat_s.so is located. This may be /usr/local/lib or
$ICP_ROOT/build.

The acceleration kernel module must be installed and the software must be started before attempting to execute the
sample code. This can be verified by running the following commands:

lsmod | grep "qa"
service qat_service status

Typical output is similar to the following:

$ lsmod | grep "qa"
qat_4xxx 61440 0
intel_qat 401408 2 qat_4xxx,usdm_drv
uio 20480 1 intel_qat
irqbypass 16384 4 intel_qat,vfio_pci_core,idxd_mdev,kvm

$ service qat_service status
Checking status of all devices.
There is 8 QAT acceleration device(s) in the system:
qat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev1 - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1
→˓#engines: 9 state: up
qat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1
→˓#engines: 9 state: up

Note: If the modules are not returned from the first command, refer to the installation instructions for additional
information on starting the acceleration software.

In user space, the sample code is executed with the command:

1.4. Sample Applications 15

Intel® QuickAssist Technology

./build/cpa_sample_code

1.4.1.4 Sample Code Parameters

The application allows the run-time parameters listed below:

Table 4: Sample Code Parameters
Parameter Description
cyNumBuffers=w Number of buffers submitted for each iteration. (default=20)
cySymLoops=x Number of iterations of all symmetric code tests. (default= 5000)
cyAsymLoops=y Number of iterations of all asymmetric code tests. (default=5000)
runTests=1 Run symmetric code tests.
runTests=2 Run RSA test code.
runTests=4 Run DSA test code.
runTests=8 Run ECDSA test code.
runTests=16 Run Diffie-Hellman code tests.
runTests=32 Run compression code tests.
runTests=63 Run all tests except the chained hash and compression tests. (default)
runTests=128 Run chained hash and compression test code.
runStateful=1 Enable stateful compression tests. Applies when compression code tests are run.
signOfLife=1 Indicates shorter test run that verifies the acceleration software is working. This parameter

executes a subset of sample tests. Details are included in signOfLife Test Parameter. (de-
fault=0)

getLatency=1 Measures the processing time for the request being processed. Requires
NumberCyInstances=1 and NumberDcInstances=1 to be configured in [SSL]
section of the driver configuration file.

getOffloadCost=1 Measures the average number of cycles spent for single request offloading. Requires
NumberCyInstances=1 and NumberDcInstances=1 to be configured in [SSL] section
of the driver configuration file.

includeLZ4=1 Include LZ4 compression tests. Applies when compression code tests are run.

signOfLife Test Parameter

The signOfLife parameter is used to specify that a subset of the sample tests are executed with smaller iteration
counts. This provides a quick test to verify the acceleration software and hardware are set up correctly.

Note: If the signOfLife parameter is not specified, the full run of tests can take a significant amount of time to
complete.

16 Chapter 1. Getting Started Guide

Intel® QuickAssist Technology

User Space

After building the sample code with the installation script, the user space application is located at $ICP_ROOT/build.

Then run the following commands:

cd $ICP_ROOT/build/
export LD_LIBRARY_PATH=`pwd\`
./cpa_sample_code signOfLife=1

1.4.1.5 Test Results

When running the application, the results are printed to the terminal window in which the application is launched.

Here is an example of the log messages created during the test:

Algorithm Chaining - AES256-CBC HMAC-SHA512 Number of threads 2
Total Submissions 20
Total Responses 20
Packet Size 512

A similar pattern is repeated for each of the tests.

1.4.2 Functional Sample Applications

The software package contains sample code that demonstrates how to use the Intel® QuickAssist Technology APIs and
build the structures required for various use cases.

For more details, refer to the Intel® QuickAssist Technology API Programmer’s Guide.

1.4.2.1 Compiling the Acceleration Functional Sample Code

Note: These instructions assume the software package has been untarred to the $ICP_ROOT directory.

The acceleration functional sample code can be compiled manually.

1. Compile for the user space using the following commands:

cd $ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional
make all

The generated sample applications are located at: $ICP_ROOT/quickassist/lookaside/access_layer/src/
sample_code/functional/build

1.4. Sample Applications 17

Intel® QuickAssist Technology

1.4.2.2 Executing the Acceleration Functional Sample Code in User Space

1. To execute the acceleration functional sample code in user space, use a command similar to the following:

cd $ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/
→˓build
./hash_file_sample

Note: The hash_file_sample is one of the functional user space applications. You can launch the other user space
applications in a similar fashion.

18 Chapter 1. Getting Started Guide

	Getting Started Guide
	Introduction
	About This Document
	Conventions and Terminology
	Features Implemented
	List of Files in Release
	Package Release Structure

	System Configuration
	Configuring BIOS
	Disabling QAT Endpoints
	Configuring Operating System
	Updating dnf Configuration Files
	Updating apt Configuration Files
	Installing Package Dependencies
	RPM-based package dependencies
	DEB-based package dependencies

	System Security Considerations

	Software Installation
	Installation Overview
	Unpacking the Software
	Configure Acceleration Software
	Configuration Options

	Install Acceleration Software
	Uninstall Acceleration Software
	Starting/Stopping the Acceleration Software
	Configuration Files
	Running Applications as Non-Root User

	Sample Applications
	Performance Sample Code
	Compiling the Performance Sample Code
	Default Configuration Files
	Loading the Sample Code Application
	Sample Code Parameters
	signOfLife Test Parameter
	User Space

	Test Results

	Functional Sample Applications
	Compiling the Acceleration Functional Sample Code
	Executing the Acceleration Functional Sample Code in User Space

